CS-PROLOG

Version 3.25.

(C) Copyright 1991 Multilogic Computing Ltd

MONOPROCESSOR MODEL

CONTINUOUS EXTENSION

DOS VERSION

MULTILOGIC COMPUTING Ltd

BUDAPEST HUNGARY



Multilogic Computing Ltd Page 2

1. Content
1. CONTENT.....uceeeecrneercrreneeeeccsenseaseccssnsesessnnaeses cerseeeeeessnnasesnnnee ceneeeereeesessnnnaees w2
2. INTRODUCTION.......cceeeeeereneeecrrereeccsensasseccsssasessnneeses ceeseeresessnresesnnnee cerssesssaraneresessssnnnsanessenanane 5
3. THE CS-PROLOG LANGUAGE........uutereerecrrreeeeeesecrsresecssnessessssasessssassnsasessansessssnsasess . 7
3.1 SYNTAX OF CS-PROLOG ...ttt et ettt e e e e vee e e e et eettetaeaeeaeseeeasasaesasansaaesees e ennnnsans 7
3.2 LANGUAGE RESTRICTIONS FOR CS-PROLOG COMPILER ........ccuuviviiiieieeeiieinresaiireneeeeeeeseeinesasireseeseeeseseeseneninns 7
3.3 ADDITIONAL POSSIBILITIES .......ceuuvtieeetteeeeeeteeeeeeeeeseeeeeieseeeeeesaeeseeesesasseeseaseseeesseeseeasesee e eeeasseesernresenesreeeas 8
4. BUILT-IN PREDICATES.......ccccretetrrreeeeecrneeeeeccssseeecssssasesssssessssssananne ceeseneeesnnneessnnnnes 10
4.1 INPUT-OUTPUT PREDICATES......ccetttutttteeeeeeeeeietatntarereeseeeeeeseersseeseeaesseeseesesaesasesesseesesesissssnsnnnssreseeseseneaes 11
4.2 DATABASE HANDLING PREDICATES .....uvvitieeiieiiiiiirereeeeeeeeeeeeeeeeeetivereeaeeseseeetss e sasesssaesees e entnsasssseseesseseeseeanns 16
4.3 PREDICATES CONTROLLING EXECUTION ......cceieiiiiuiirieieeeeieeeeteeeeeiittireeeeeee e e etaneaeeaesaeeseeseeseetnasaneseeseesnnaneeens 19
4.4 INQUIRING PREDICATES ...eveveiiieieiiitrereeeeeeeeeeeeeeeeietsaaeteeseseeteeetseresesarssaeseesa senasaseseesaeseieseseseseesassseeseeseneninnes 19
4.5 ARITHMETICS .....ceeettttteeeeeeeeeeietaeneetareaeesees e eetsaresaesaeeaeaeseeeeeeesasssasaeeseseassss snasesssaeseesenensnsnsssaeseesseseeseeenns 21
4.6 COMPARISON PREDICATES .....eeeieieturireeeeeeeeeeiins eeeetareteeseeeeeeeeesereseesee saeseesessesesaseseeseesesessasseennnnssreseeseseneanes 23
4.7 STRING MANIPULATING PREDICATES .....uvtvieiieieieitirereeeeeeeeeeeeeeeeeetsreeseeseseeeessans sesessseesees e ensnsnsssseseesesseeseeenns 23
4.8 WINDOW HANDLING .....vvtviiieeeisiiiiiiieieeeeeeeeeeeeeeeteteeeeeseseeetats seensaseseesees e estnssaseseeaesaeeseeseeeesasareseeseesenensnnss 25
B8] WINAOW BASICS ..o e e e e e 25
4.8.2 Window Handling PrediCALes..................ccccuiiiiiii ittt ettt e 27
B.8.3 SCHECN LOVELS ... e e e 29
4.9 SYSTEM HANDLING PREDICATES .....uuvuvivieieeeiiieititeeeee veeeeeeeeeeeeiesareseeseesesaesseseesssssseeseseseesersseses srsreesessenenes 30
410 OPERATORS .....cceeetuttteeteeeeteeeeieat eeeetarsareaees e eeatsasesaesas aeseeaeeeesesasasasaeesesaeass sennsssssaeseeeen e ensnsssseses reseesesenes 30
4. 10.1 OPEFALOF BASICS ...ttt et ettt ettt ettt et e ettt et 30
4.10.2 Predefined OPeralOrs .............ccccouciiiiuiiie et ettt ettt ettt e et 31
4.10.3 Operator Handling PrediCAles .................c..coociiiiiiisiiiiiiie et ettt 32
ZT1 GRAPHICS. ..c oot ieetitetee e eee e et ee ee e et etaaeaeesee e e eetteaaeaee taeaeeaesesaetsabeseeseeeeaas s e eesasssseseesesesessarssesee srereeseesanenen 32
4111 EQGLE GFAPRICS. ..ottt ettt ettt et ettt ettt 32
4.11.2 Eagle ACtiVating PrediCIes. .............cc..oiiii i ittt e ettt 33
4.11.3 DYAWIRG PPOAICALES ..........ceeeie e ettt ettt et 34
4.11.4 Global Graphic State INAICAIOTS ..................cccooiiiiiiiiiiiiieiet ettt e 35
4.11.5 Graphic State Indicators FOr EQQIES.................ccociiioiiiiiiii ittt 36
4.11.6 Miscellaneous Graphic PrediCares. ...............ccouiuuiiiiiiiiiieiit ettt 38
4.12 MISCELLANEOUS SYSTEM PREDICATES ....cceeeieieitirireeeeeeeeeeeeteeeeeietnreaeeseeeeseesneseesesaseseeseseeieissaseseesesssnenesens 38
5. PARALLEL EXECUTION.....ccccccecveeernnnee cerneeeesessnresesnnnne cerseeeesesaressnnneees cereeeeeesensesesnne 4?2
5.1 PARALLELISM IN CS-PROLOG ......ooiiiiiiiiiiiiie ettt et et et ve e e e e e evvaareaeeeeeaeaeeseeeeannsnnes 42
5.2 THE SCHEDULER OF CS-PROLOG ......ccooiiiiiitiiiiie et ettt ee ettt e caeaee e e e e eettaartreaeeseeeen aee e e ennnnes 43
5.3 PROCESS MANIPULATING PREDICATES.......cceeiuttttteeeeeeeeieiens ceeetarereeseeseseetarereeseesesreeseesesesasasesessessesessesnenines 45
6. THE PROGRAMMING ENVIRONMENT .......ccccceveernenee ceseeeerenseressnnnnens eeernnreeessaresesnnsesns 47
6.1 PROJECTS ... ettitee et et e et eeett ettt e e e e et e ette b e aeeeeeeeesee e et es s aseaeeaeesenesass s tassasesaeseeeeaserasaeseeseeseseeseeannsernes 47
0.2 FOCUS .ottt ettt ettt et e et ettt e e et aee e e e et taaaeaeeseeeet e e en eetassaaeaeee e eetstraaeesrerebaeseeeeenrarerees 47
.3 IMIENUS....ceieiieetiteiee et e e et eee ee e oottt e e e e e e et et be aesee aeaeeee s e eetassaseaeeseeeess seneesnsssaesaes e eannseresesee treraeaeeeenssarerees 48
0.4 BROWSERS .....uutitriieeeeeeeeeeetutestteaeeaeeeeeeetstaeseeseeaes seee e e esasssaesees e eetasssss sasasesaeseeesesaseraseeseesesaseeseseniessnnes 48
.41 FUlE DFOWSEE ... e e 49
B.4.2 FOCUS DFOWSEE ..o e ettt 49
.5 EDITORS ...ccoeeeititirieiee e e e et eeett et ettt e e e e et et te e e e e e e veeaeeeeeeeasabeaeeaeee e esass setnssaseseeseseeeanseraseeseses asaeesensnsarennes 50
0.5.1 TRE SCTAD DUIFOF ..ottt ettt ettt e e eens 51
6.0 THE HELPKEY .....uvuvvvieeeieeeieieitereeeesueeteeseeseeasasesesaeeseseenes e eesnsssssseeseseseasassssessssesseesaeaensssseseseesasaaieeesenensnnes 51
6.7 THE MAIN MENU ....uvvivieieeeeseiiittitereeeeeseeeeeseeeetaseseeseeseseetenss seeessersseesesssesesasssseseesesseesessesessesaseseesessssesssssenines 52
6.8 FILE SUBMENU......uuvvieieeeieieeiittteetee vtereeeeeseeeisasesesseesesees s eeeesssssssseesesesesesessssesestseseesasaeisssreseeseseseaiasesenensnnes 52
0.8.1 LOAU PFOJECE ...t ettt ettt ettt ettt et 53

0.8.2 LOAA file.........ccooiiiiiiiiiii e e 53



Multilogic Computing Ltd Page 3

0.8.3 INEW fIL€ ..ottt e e ettt et 54
0.8.4 SAVE PFOJECT........oe et et e et e e ettt s 54
0.8.5 SAVE fIlE ..ottt et 54
0.8.0 EXCIUAE e .........oe oottt e et s 54
0.8.7 INEXE fIl@......ee ittt ettt ettt e e ettt et e 55
0.8.8 SELECE 1@ ...t e ettt e 55
0.8.9 RENAME IlE ...t e e e ettt e et e et et s 55
0.8.10) INEW SYSTEIN ...ttt ettt e e ettt e a et ee ettt e 55
6.9 EDIT SUBMENU .....uuvviieeieeeisiiittteeeeeesereeeeeseeeetaseseeseeseseetesn e eesssrsseesesesesesasssseses taeseeseneeisssreseseeseseenans seensnses 55
B.9. 1 ENICE ..o e e e e e 55
6.9.2 MOV ..ottt h ettt ettt ee st n ettt eaeeaeeae e 56
B.9.3 DCLOTE. ..o e 56
B.9. 4 INSCET....cceeeeeeeee e e e e e e e e e e 56
B.9.5 LOAA TOXT ..o e e e e e e e e e 56
B.9.0 Edit @XIO N ...........oeceeeeeieeeeee e e e e 57
0.9.7 COPY 10 SCTAP ...ttt ettt ettt e e ettt e e ettt ettt ettt ettt n e et e e 57
0.9.8 CUL FO SCTAP ...ttt et et et ettt e ee et e bt e ee e et et e e s 57
0.9.9 EdIt SCHAP ...t ettt et et e 57
B.9. 10 FOCUS. ...cccooooeeeeeeeeeeeee e e e et 57
B.9. 11 SCATCH ..o e e e 57
6. 10 EXEC SUBMENU .....uviiieieiisiiiitttteteeeeeeteeeeeeeeesaseeseeseseetesass e eesersseesessaaesasssssseesaseesesseeesessseeseseseenessess sennes 58
. 101 RUT. ..o e e e e e e 58
0.10.2 D@DUG.........oe ottt e ettt 58
. 10.3 SOIULTON ... e e e e e 58
6.11 DEBUGGING CS-PROLOG PROGRAMS........uuviuiiieereseiieisaresenntarereeseeeeeeeiosssseseesaessesesseeessesasesesseesesenssssnnnnes 59
O.11.1 THhe "BOX" MOACL ............coooneeeeeeeee e e e e e 59
6. 11.2 TRHE INLCHACIIVE FFACE. .........ccceeeeeeeee e e e ettt 59
0.11.3 Setting DIEAKPOINLS ..........cueiiiiiiiii ettt et ettt ettt et 60
0.11.4 Debugging Parallel EX@CULION. ................ccccccui it ettt et 61
6.12 OPTION SUBMENU ....cceiiiiieieiitturereeeeeaeieeeseeeeiesssseseeseseeeaeserssesasersseeseesesaesssseseesassas seesesesesssssseeseesesesisssseseee 61
6.13 SETUP SUBMENU ....ueevieieeieieiittttereeeeeeeeeeeseeeetossaeeseeseseatasasssasnsersseeseessssesssssseesanssesessesesseseseseeseesssesssssnnnnes 62
. 13.1 EXICUNAL @AIIOT .........cceooeooeeeeeee e e ettt et 62
0.13.2 SOUFCE PALLETN ...t ettt ettt et ettt ettt een s 63
0.13.3 PrOJECE PAMIETTL ... ettt et e ettt ettt ettt et e en e et eens 63
6. 13.4 Edit WIRAOW STZE ..o e e et e 63
0. 13.5 THACE WITIAOWS ..o e e e e e e 64
0.13.6 DAAIOCK AOIECHION ... e e e et 64
B.13.7 COLOTS oo e e e e e e e e 64
0.13.8 HEIPDKEY ...t e e e et e e 65
0.13.9 SAVE SEIUP ...ttt e e et ettt s 65
6. 14 HELP SUBMENU......00utiieeiisiiiittttereeeeeseeeeeseeeissseeseeseseetesss seeessersseesesssesesasssssseesesseesesseiersessseseesessssensessenienes 65
7. EXAMPLES. .......ccceeeuueenee ceesenrecesaresesnnnee cerneeeesessnnasesnnnee cerneeeesesnaressnnnnee 66
T I BANK ROBBERY......uiviiiiiiiiiiiiiitiieieeeeeteeeeeeeeeetteaeeaee e e eetst e et tsareseeseeeassassaaeseeeseseeseeeessesesaeseseeeenasss e ensnnes 66
7.2 PRIME NUMBER GENERATION. .....0uvttieieeeieiitereereeesereeseeaeteiessaseseeseesesass e eesnsssssseesesesssssesssessessesesseesenssiosesens 67
7.3 SORTING IN TIME ...ouiiiiiiiei ettt e et et eeee e e e tbaaeeaeeaaeeaeaeeseeesasareseeseee e esesesnnnnes 68
7.4 SHORTEST PATH SEARCH .......tutiiiiiiei e eeiettie s tteieetee e e eette e aaeaeeseeeaeseeeetesassaeeaaes e eeassses srsereseseeseseeensarerees 70
7.5 EFFECTS OF THE "WAIT _FOR" PREDICATES .....uvtiottttiitteitiieeitte sttt eittee it eiite ettt s saeeen e etbeeeaiteettessaeeennneennnees 72
7.6 GRAPHICS EXAMPLE .....cociiiiiiiiiieieeiee e eeeet e eeeeette e e e e et eette e aee creaaeaee s e eettsareseeseesetes e e e estasssaeseaaeseseesssrerees 72
7.7 WINDOWS AND IMENUS.......ecoiiititireeeeeeeeeiietteeeitareteeseeeeeeesasareseeseesseseeseeaeiesasesesseesesessass senrsssssesessenensnsnresees 73
8. EXTERNAL C INTERFACE ......uucccceeeecrneeeeccsenseneeccssseesesssasesssssesssssssssasessssasasssnnne " 77
8.1 GLOBAL ITEMS .. .vuviiieieiee ettt ettt e et e it e e e e e e et e e ettt taeaeesee e e aababesaeaee aeaeeseeesnssareseseeseseenans senennnnes 77
8.2 THE C INTERFACE FUNCTION SET.....cciiiiiiiiiiiiiiiie et e e ee e et iee e e e e eeetave s aveaeeaee e e ssavaveaaeaeesaeeaeseeeesennnnes 78
8.3 INSTALLATION OF USER EXTENSIONS FOR INTERPRETER .......uuvvviirieeeeeieiinrereecrereereeeeeeearsasseeseeseeensseesenensnnes 83
8.4 INSTALLATION OF USER EXTENSIONS FOR COMPILER.........c0uvuvireeeeeeeeeetiresnirnrereeeeeeeeeeserereeseeseeseseesesasiessnnes 85

9. THE CS-PROLOG COMPILER SYSTEM.........ccceeeuveueee . cereeeseeennennaesanennee 87




Multilogic Computing Ltd Page 4

9.1 THE CS-PROLOG COMPILER .....cviviuiitiiiuitiisitiitisiit sttt s ies et et b s e ae s 87
9.2 THE CS-PROLOG RUNTIME SYSTEM......ccviiiiiiiiiiiiiiiiiiiits ettt sttt 88
10. CONTINUOUS SIMULATION IN CS-PROLOG ......cccueeruerensueessunsanscsssessunssesssassanesne .90
10.1 DECLARATIVE CLAUSES ......oiuiitiiitititetiiet ittt sttt s b bbb s eb e e b s 91
10.1.1 EQUALION DEfINItiON ..........cocouiiiiiiiiieieeiit ettt et et ettt et e et e et eeiee e 92
10.1.2 PIOttING ON TRE SCFEEM.......c...coouiieeieit ettt ettt ettt ettt 94
10.1.3 Document@tion On TRe PFINIEE ............c...ccocuiiiii ittt ettt ettt e 95
10.2 CONTINUOUS SIMULATION BUILT-IN PREDICATES .....coooviiiiiiitiieieiiiieis ettt 96
10.2.1 Continuous Process HandliNg..................ccccoooioiiiiiiii it et e 96
10.2.2 Differential Equation System EVAIUGIION ................ccocciiiiiiiiiiiieiit et 98
10.2.3 Asking For State VariabBIes ................c.ccoiiiiiiiiiiiiiie ettt 98
10.2.4 Waiting FOr CORILIONS ............ccueiiiiiiiii e ittt ettt et ettt ettt ee ettt eee e 99
10.2.5 Parameter HANAIING .................ccoiiiiiiiiii ittt ettt e ettt 99
10.2.6 Printer HANAIING .............cocooi ittt ettt ettt ettt ettt n 100

11. INDEX ...ccovverveenunesnennne . . tesreessaeesanessnasssanesanessesaanesasasnsanes 102




Multilogic Computing Ltd Page 5

2. Introduction

At the very Dbase CS-PROLOG 1is a standard PROLOG
interpreter/compiler. The compiler uses an extended WAM.

The CS-PROLOG system has two different models for the
execution of parallel programs depending on the number of
processors at the current machine on which it runs:

monoprocessor model
multiprocessor model

In both models the interpreter/compiler executes different
goals simultaneously. To each goal a so called process 1is
assigned. The process 1is represented by the current path in
the search tree underlaying to the goal. The synchronization
of the simultaneously working processes is done by messages.
The processes can be suspended waiting for messages and these
messages are the recommended way of communication between
processes. No communication through common logical wvariables
or by modification of the common database 1is supported.
Processes can be generated or deleted dynamically during
runtime. Creation and deletion of ©processes as well as
communication is ensured by special built-in predicates "new",
"delete_process", "send", "wait_ for" etc.

Used in a monoprocessor environment the execution of the
processes 1is controlled by an internal scheduler (quasi
parallel execution). Process exchange 1is only possible at
certain points of a process ("wait_for", "hold").

Used in a multiprocessor environment it 1is possible to
launch processes on different processors and execute them in
parallel. It is possible to have conceptually more processes
in the system than processors. In this case on each processor
where more then one process 1s executed the internal scheduler
shares the processor between processes the same way as it
would do in the monoprocessor case.

Backtracking 1is supported even 1n a multiprocessor
environment and completeness 1s ensured by the distributed
backtracking algorithm.

However the forward execution is mostly parallel,
backtracking is generally sequential. The ©philosophy of
CS-PROLOG is similar to Hoare's CSP this is while CS-PROLOG 1is
standing for the abbreviation of Communicating Sequential
PROLOG.

Beside of the notion of processes and messages the notion
of simulation time 1s also introduced in CS-PROLOG. Each
process evolutes in each own local time. It is possible to
assign time duration to the execution of subgoals by mean of
special built-in predicates advance and hold. A 1local clock
ticks the elapsed simulation time for each process. Note that
the simulation time has nothing to do with the execution times



Multilogic Computing Ltd Page 6

of programs written in CS-PROLOG. The simulation time is used
to model time durations in real systems. Time provides another
synchronization mechanism for processes.

In traditional monoprocessor simulation systems the time is
unique that 1is all local clocks at any moment show the same
global time.

In a multiprocessor environment maintaining the same notion
of global time causes a bottle-neck for the parallelism. Two
methods are known to solve this bottle-neck: the so called
conservative and the so called optimistic approach (Time
Warp) . The current version of CS-PROLOG supports the
conservative approach. The future versions of CS-PROLOG will
support both of them.

When the time changes in discrete steps (may be not
uniformly) and events occur in discrete time moments we speak
about discrete simulation. If time changes smoothly in a
continuous way we are speaking about continuous simulation.
Continuous simulation models are generally expressed with the
help of differential equations.

In CS-PROLOG versions up to 3.2 it is possible to write
only discrete simulation models. Versions 3.3 or higher will
support both discrete and continuous simulation modelling and
will admit even the combination of them into a so called
combined simulation model. Special built-in predicates and
clauses serve to support this kind of knowledge Dbased
modelling where discrete and continuous components communicate
through messages.

This documentation deals with the monoprocessor model under
DOS operating system.

The CS-PROLOG system consists of two components:

- The CS-PROLOG interpreter with enhanced program
developing environment which enables you to write,
modify, run, test and debug your CS-PROLOG program.
This component serves for the program development.

- The CS-PROLOG compiler with a byte-code interpreter.
Once you have finished the program development you
can compile your program into a special format
(abstract code for the CS-PROLOG's byte code
interpreter) and you can run your application as a
stand-alone program. The execution speed 1s much
higher for compiled programs. Except some
restrictions (detailed later) the CS-PROLOG language
is portable from interpreter to compiler without any
modification and the built-in predicate set is fully
compatible.



Multilogic Computing Ltd Page 7

3. The CS-PROLOG Language

3.1 Syntax Of CS-PROLOG

The syntax is that of DEC10-PROLOG except:

- alternatives and groups in a <clause are not
supported

- the built-in operator set is different
- the operator description differs

- comments until the end of the line are marked with
the "$" sign

3.2 Language Restrictions For CS-PROLOG Compiler

Compilation of PROLOG programs required the introduction of
several changes and restrictions in the language itself. The
clauses compiled Dby the compiler are called in this

description 'static’', the clauses added runtime by
"add clause" are 'dynamic'. The calls in the static program
that have no matching static clauses (with the same name and
arity) and are not calls of a built-in predicate are

considered dynamic. (So the compiler can not signal undefined
calls).

It is not allowed to have static and dynamic clauses with
the same name (even with different arities). E.g. if in the
program there is a clause

help(a,b,c).
you can not add dynamically a clause

help(e,f).

If such a clause is called statically it causes a compile
time error.



Multilogic Computing Ltd Page 8

The syntax of float numbers has changed. At least one digit
of the fractional part has to be given. E.g "1." is considered
as the integer 1 and the period symbol. So the uncomfortable
spaces can be avoided in clauses like

d(N,M):- Mis N - 1.
In the interpreter version as the char sequence "1." is
interpreted as a float number a space has to be inserted

before the period symbol:

d(N,M):- Mis N -1

3.3 Additional Possibilities

It 1is possible to generate code statically for dynamic
predicates, i.e. to compile partitions of clauses that will be
modified dynamically during the execution. By default the
clauses in the source code are considered to be static. Using
the following pragma

dynamic_on.

the compiler will generate the code of subsequent clauses as
dynamic clauses. The original state can be reset using

dynamic_off.

The user can increase the efficiency of the code giving
more information about a partition with a "mode" declaration.
In this declaration the types of arguments of a partition are
specified:

"+" (in) the argument is always bound when executing

"-" (out) the argument is always an unbound variable
when executing

"?" (unknown) we don't know anything about the type.
The "mode" declaration has the following form:
mode pred name(in_out signl, in out_sign2, ...).
Here "pred name" is the name of the partition.There are as
many arguments as the arity of the partition and

"in out_sign"-s are "+", "-" or "?" to specify "in", "out" or
"unknown" types respectively.



Multilogic Computing Ltd Page 9

For example the classical naive reverse program can be
improved using modes:

mode naive_reverse (+,-).

naive_reverse([A | X],2Z):-
naive_reverse (X,Y), append(Y,[A],Z).

naive_reverse([],[]).
mode append (+,+,-) .

append([A l x] IYI[A l Z]):_
append (X,Y,Z) .

append([],L,L) .



Multilogic Computing Ltd Page 10

4, Built-in Predicates

In the description of built-in predicates we use different
letters to indicate the different types of arguments. Calling
a built-in predicate with an argument +type other than
indicated here will cause a run-time error. Multiple letters
mean a choice of several argument types. The letters listed
below refer to the following argument types:

I non negative fixed point number
(e.g.0, 10)

N number (fixed or floating point number, e.g.
0, -0.4)

(o} constant (identifier or string, e.g. jon or
"Helen")

L list (e.g. [1, X, yI])

v unbound variable (e.g. X)

S simple value (not variable, list, or

compound term)

W window identifier (e.g. window_1)
F file identifier (e.g."file 1")

A value identifier (e.g. var_1)

E arithmetic expression (e.g. A + B)
X any of the above mentioned

If there is more than one argument of the same type than
they are indexed. In the following descriptions the phrase
"unifies it with X" means that if the unification fails the
call will fail as well.

A built-in predicate can be

- deterministic or non-deterministic

- backtrackable or non-backtrackable

Deterministic means that during backtracking no new
alternative is tried.

Non-deterministic means that during backtracking a new
alternative is tried, if exists.

Backtrackable means that during backtracking all global
changes are restored to their previous state (undo).

Non-backtrackable means that during backtracking the global
changes are not restored.



Multilogic Computing Ltd Page 11

Without explicit declaration predicates are considered
deterministic and non-backtrackable.

4.1 Input-Output Predicates

read (X)
read (WF, X)

Reads the next syntactically correct term either from the
default input channel or from the channel identified by W
(window) or F (file) respectively and unifies it with X.

read_token (X)
read_token (WF,X)

Reads the next syntactically correct token either from the
default input channel or from the channel identified by W
(window) or F (file) respectively and unifies it with X.

read_symb (X1,X2)
read_symb (WF,X1,6X2)

Reads the next syntactically correct term either from the
default input channel or from the channel identified by W
(window) or F (file) respectively and unifies it with X1I1.
Unlike "read" "read symb" unifies X2 with a so called symbolic
variable dictionary. Since PROLOG variable names (identifiers
beginning with an uppercase letter or underscore) are
substituted during reading with a system generated identifier
(an underscore followed by a number) the user never can obtain
the original symbolic form of a variable. However the user may
want to preserve the symbolic form of the wvariables in the
term read in order to make them appear on the output in the
original symbolic form. The symbolic variable dictionary
unified with X2 connects variables with their symbolic form.
The dictionary is a PROLOG list and contains one list element
for each different wvariable in the term read. For terms
containing no variables the symbolic variable dictionary is an
empty list. Every item has the following form:

[ nnn | "NAME"]

where _nnn 1is the system generated identifier of the
variable NAME. Note the variable names like _nnn identify the
same logical variable. So the user should handle the read term
and its symbolic variable dictionary together.



Multilogic Computing Ltd Page 12

E.g. it is advisable to compose a new term taking both of them
and adding the new term to the PROLOG's database Dby
"add clause". Example: reading the term

a(BICIDIC)

"read symb" the symbolic variable dictionary will be similar
to

[[_123 | "B"1,[_126 | "C"],[_129 | "D"]]

write (X)
write (WF,X)

Write the contents of X either to the default output
channel or to the channel identified by W (window) or F (file)
respectively.

nl
nl (WF)

Write a newline either to the default output channel or to
the channel identified by W (window) or F (file) respectively.

writeq(X)
writeq (WF,X)

Write the contents of X either to the default output
channel or to the channel identified by W (window) or F (file)
respectively. (q is for quoted) Unlike "write" "writeq" writes
out a string argument with quotes if necessary. Example:

writeq("A B")
gives

"A B"
on the screen while

write ("A B")
gives

A B

on screen.



Multilogic Computing Ltd Page 13

write_inside (X)
write_inside (WF,X)

Write the contents of X either to the default output
channel or to the channel identified by W (window) or F (file)
respectively. Unlike "write" "write_inside" omits the
parentheses and commas of the outermost level if the wvalue of
X is a list. Example:

write_inside([a,b])
gives

ab
on the screen.

display (X)
display (WF,X)

Write the contents of X either to the default output
channel or to the channel identified by W (window) or F (file)
respectively. The written term will be the same as in the case
of "write" Dbut operator expressions (if any) will appear in
regular term format. Example:

display(a + b * c)
gives

+(a,*(b,c))
on the screen.

write_ symb (X1,X2)
write_ symb (WF,X1,6X2)

Write the contents of X1 either to the default output
channel or to the channel identified by W (window) or F (file)
respectively. Unlike "write" "write_symb" expects in its X2
argument a symbolic variable dictionary (see "read symb"). It
writes out the X1 term in a such a way that if a variable has
an item in the dictionary then the appropriate symbolic form
is written instead of the system generated variable name.

write_spaces (I)
write_spaces (WF,I)

Write a number of I spaces either to the default output
channel or to the channel identified by W (window) or F (file)
respectively.

open_file(C,CV)

Opens a file for reading. The first argument must be a
valid file name in the current operating system. If the second
argument is a constant it becomes the inner identifier of that
file; otherwise the wvariable V is matched with a file



Multilogic Computing Ltd Page 14

identifier supplied by the system. It fails if the file could
not be opened.

create_file(C,CV)

Opens a file for writing. The first argument must be a
valid file name in the current operating system. If the second
argument is a constant it becomes the inner identifier of the
file; otherwise the wvariable V is matched with a file
identifier supplied by the system. It fails if the file could
not be created. If the file already exists it will be
overwritten.

append file(C,CV)

Opens a file for appending. The first argument must be a
valid file name in the current operating system. If the second
argument is a constant it becomes the inner identifier of the
file; otherwise the wvariable V is matched with a file
identifier supplied by the system. It fails if the file could
not be found nor created. If the file already exists the next
output requests will be appended to the end of the file. If
the file don't exist yet a new file will be created.

close file (F)
Closes a file identified by F.

set_input (WF)
set_input (WF,X)

Sets the default input channel either to the channel
identified by W (window) or F (file) respectively. If a second
argument is given the previous default channel identifier is
unified with it.

set_output (WF)
set_output (WF, X)

Sets the default output channel either to the channel
identified by W (window) or F (file) respectively. If the
second argument 1s given the ©previous default channel
identifier is unified with it.

get_input (X)
Unifies the current input channel identifier with X.
get_output (X)

Unifies the current output channel identifier with X.

read from string(C,X)
read from string(C,X,X1)

Reads a syntactically correct object from the constant C
and unifies it with X. C does not necessarily have to contain
one single PROLOG term. If C contains more than one term the



Multilogic Computing Ltd Page 15

first term is read. If X1 is given the remainder string 1is
unified with it.

read from string symb (C,X1,X2)
Reads a syntactically correct object from the constant C
and unifies it with X1. It wunifies X2 with the symbolic
variable dictionary. (See "read symb".)

write_ to_string(V,X)

Forms a string representing the content of X exactly as
"write" does and unifies it with V.

write_ to_string symb (V, X1, X2)

Forms a string representing the content of X1 exactly as

"write_ to_string" does and unifies it with V. Unlike
"write_ to_string" '"write_to_string symb" expects in its X2
argument a symbolic variable dictionary (see "read symb"). It

forms the X1 term in a such a way that if a variable has an
item in the dictionary then the appropriate symbolic form is
used instead of the system generated variable name.

write_inside to_string(V,X)

Same as "write_ to_string" except that
"write_inside_to_string" omits the parentheses of the
outermost level and all the commas in that list if the wvalue
of X is a list.

get0 (X)
get0 (WF, X)

Reads the next byte either from the default input channel
or from the channel identified by W (window) or F (file)
respectively and unifies it with X.

get(X)
get (WF, X)

Reads the next printable character either from the default
input channel or from the channel identified by W (window) or
F (file) respectively and wunifies it with X. Printable
characters are the ascii code of which is greater then 32.

read record (X)
read record (WF,X)

Reads the next character record either from the default
input channel or from the channel identified by W (window) or
F (file) respectively and wunifies it with X. A character
record consists of all the characters between the current
character of the input stream and the next newline character.
The newline character itself won't Dbelong to the character
record but will be removed from the input stream.



Multilogic Computing Ltd Page 16

4.2 Database Handling Predicates

NOTICE: (for database handling predicates) If an argument
which is a clause contains an operator with negative priority
(e.g. ":=", ","™) then it must be enclosed in parentheses!

add_clause (X)
add _clause (X, I)

X must be a clause. Enters the clause X to CS-PROLOG's
database. The new clause 1s either appended to the end of the
partition of X or inserted as the Ith clause of the partition.
A partition 1s an ordered set of clauses that have the same
name. If I is equal zero or greater than the number of clauses
already in the partition then the clause is appended.

delete clause(C,I)

Deletes the Ith clause of the partition named C from
CS-PROLOG's database. If the clause <can not be found
"delete_clause" sends error message.

delete partition(C)
Deletes all clauses of the partition C.
get_clause (C, I, X)

Unifies the Ith clause of the partition C with X. If the
clause can not be found "get_ clause" fails.

find clause(X1)
find clause (X1,X2)

X1 must be a partially qualified clause with the name of
the clause given. "find clause" wunifies X1 with the first
clause in CS-PROLOG's database that matches 1it. Every time
when "find clause" 1is executed again during backtrack it
unifies X1 with the subsequent matchable clause in a
non-deterministic way. "find clause" fails if no more such
clause exists. If X2 is given it is unified with the serial
number of the clause in its partition (This predicate is non-
deterministic and non-backtrackable).

clause_count (C,X)
Unifies the number of clauses of the partition C with X.

assert_clause (X)
assert_clause (X, I)

Performs the same task as the predicate "add clause".
However when backtracking reaches this point the asserted
clause will Dbe removed from CS-PROLOG's database. (This
predicate is deterministic and backtrackable).



Multilogic Computing Ltd Page 17

suppress_clause (C, I)

Performs the same task as the predicate "delete clause".
When backtracking reaches this predicate the suppressed clause
will be reloaded to CS-PROLOG's database with the same serial
number as it had when it was suppressed. (This predicate 1is
deterministic and backtrackable).

suppress_partition(C)

Performs the same task as the predicate "delete_ partition".
When Dbacktracking reaches this predicate all suppressed
clauses will Dbe reloaded to CS-PROLOG's database. WARNING:
Intermixing backtrackable and non-backtrackable data-base
handling predicates for the same partition can lead to
unexpected results. (This predicate 1s deterministic and
backtrackable) .

set_value(C,S)

Stores the simple expression S (anything that is not a list
or a compound term) as value of the global wvariable named C.
The previous value of the wvariable is overwritten. The
constant C Dbecomes the inner identifier of this global
variable.

get_value (A, X)

Returns the wvalue of the global variable A by unifying it
with X.

incr_value (A,X)
If the wvalue of the global wvariable 1is a number then
"incr_value" increments it by one and returns the result
unifying it with X. If the value 1is not a number an error

occurs.

set_value b(C,S)

Performs the same task as the predicate "set_value".
However when backtracking reaches this point the variable will
be reset to its previous value. (This predicate is

deterministic and backtrackable).
incr_value b (A,X)

Performs the same task as the predicate "incr_value".
However when backtracking reaches this point the wvariable set
will Dbe reset to 1its previous value. (This predicate is
deterministic and backtrackable).

comp (L, X)

Composes a new term from the elements of L and unifies it
with X. The first element in L will be the name of the new
term. The remaining elements will form the arguments of the
new term in the same order as in L.



Multilogic Computing Ltd Page 18

decomp (X1, X2)

X1 must be a term. "decomp" decomposes X1 to a list and
unifies it with X2. Its name will be the first element of the
list and its arguments will Dbe the remaining elements of the
list in the same order as in the term.

save_partition(F,C)

C must be the name of a partition in the PROLOG's database.
"save partition" stores the named partition to the file F in
text format. If the partition cannot be found error message is
sent.

load file(C)

C must be a filename in the current operating system. The
file should contain syntactically correct PROLOG clauses.
"load file" reads all clauses and adds them to the PROLOG's
database as "add _clause" would do. If the file cannot be found
it fails. If syntactical error occurs then reading 1is
abandoned and error message 1is sent. But clauses previously
read and added remain in the database.

local_add clause (X)

local add | clause (X, I)
local_delete_clause(c I)
local_delete_partition(C)
local get clause(C,I, X)
local find | _clause (X1)
local find | _clause (X1,X2)
local clause _count (C,X)
local_assert_clause(x)
local_assert_clause (X, I)
local_ suppress_clause(C,6I)
local suppress_partltlon(C)
local_set_value(C,S)

local get ~value (A, X)
local_incr_value (A,X)
local set value b(C,S)
local_incr_value b (A,X)

The scope of the previously described database handling
predicates 1is global, i.e. changes in the PROLOG's database
made by one of them in one process 1is wvisible in another
process. Predicates with the "local " prefix do the same task
as their global counterpart but their scope is local to the
calling process, 1i.e. changes 1in the 1local database of a
process 1s invisible for every other process. The intermixed
use global and local database handling predicates inside a
process isn't allowed and the effect is undefined.



Multilogic Computing Ltd Page 19

4.3 Predicates Controlling Execution

succeed
Always succeeds.

fail
Always fails.

eq(X1,X2)

Unifies X1 with X2. "X1 = X2" is the same as "eq(X1l,X2)".

! cut
1 (X) cut ancestor
£ m"n (cut) is executed it always succeeds. When
backtracking reaches its calling point then "1t (cut)

prohibits every other choice between itself and 1its parent
call.

If "!'(...)" (cut ancestor) 1s executed it fails unless it
finds an ancestor unifiable with X. When backtracking reaches
its calling point then "!'(...)" (cut ancestor) prohibits every

other choice between itself and the found ancestor unifiable
with X. The ancestor to be found must have Dbeen invoked
through "ancestorable call".

ancestor (X)

Tries to find the youngest ancestor unifiable with X. The
predicate fails 1f none 1is found. The ancestor to be found
must have been invoked through "ancestorable call".

ancestorable call (X)

X must be term representing a PROLOG call. If a call X is
referenced by an "ancestor" or "!(...)" (cut ancestor) it has
to be invoked through the "ancestorable call" predicate. E.g.
"ancestorable call(a_call(1,z))" invokes "a call(l,z)" as
usual but later this call can be referenced by either of
"ancestor" or "!(...)" (cut ancestor) predicates otherwise no
ancestor would be found and both of them would fail.

4.4 Inquiring Predicates

is_num(X)

Succeeds if the argument represents either a fixed or a
floating point number otherwise fails.



Multilogic Computing Ltd Page 20

is_int(X)

Succeeds if the argument represents an integer number
otherwise fails.

is_float (X)

Succeeds if the argument represents a floating point number
otherwise fails.

is_atom(X)
Succeeds if the argument represents an atom - name with
lower case initial letter or a string (anything between double
quotes) - otherwise fails.

is_file(X)

Succeeds if the argument represents a file identifier
otherwise fails.

is_window (X)

Succeeds if the argument represents a window identifier
otherwise fails.

is_value (X)

Succeeds if the argument represents a value identifier
otherwise fails.

is list(X)
Succeeds if the argument represents a list otherwise fails.
is_var (X)

Succeeds if the argument is an unbound variable otherwise
fails.

is_ground (X)

Succeeds 1if the argument is a ground constant variable
otherwise fails.



Multilogic Computing Ltd Page 21

type_of (X1,X2)
Unifies X2 with one of the constants

int

float

file

window

value

atom

list

var

expr

ground constant
prolog pred
nonprolog_pred

corresponding to the type of X1.
list_length(L,X)

Unifies the length of the given list L with X.

4.5 Arithmetics

All arithmetic functions are collected in the built-in
predicate "is" which appears in infix format:

X is E

E 1is an arithmetic expression composed of numerical
constants, variables, arithmetical Dbuilt-in operators and
parentheses. Numerical constants are either integer or
floating point numbers. Variables must have numerical values
at the moment of evaluation otherwise an error message 1is
generated. The built-in arithmetic operators are of either
unary or binary type.

It is ambiguous to write
X is 1+42.

because it is not clear whether the period is a decimal point
or the end mark of the term. Also writing

X is 1-2.

is ambiguous because minus 1is considered to be the sign and
not an operator. To solve these problems leave spaces



Multilogic Computing Ltd

Page 22

between number and period and between numbers and operators:

X is 1 +

2
X is 1 2

The binary operators are:

El + E2 add

El - E2 subtract
El * E2 multiply
El / E2 divide
El mod E2 modulo
El ~ E2 power

If either operand of the binary operators has a floating

point wvalue the result will be a floating point number
otherwise an integer number. Exception: the power operator
always generates a floating point number.
The unary operators are:

+E unary plus

-E unary minus

abs (E) absolute wvalue

sqgrt (E) square root

exp (E) exponential function

log(E) natural logarithm

sin (E) sine

cos (E) cosine

tan (E) tangent

asin(E) arc sine

acos (E) arc cosine

atan(E) arc tangent

floor (E) truncate decimal part

trunc (E) truncate decimal part

These predicates always return floating point wvalues.

Exceptions: "unary plus" and "unary minus" return the same
type as their argument. "trune" returns fixed point value. The
trigonometrical functions expect their argument to Dbe in



Multilogic Computing Ltd Page 23

radian and the inverse trigonometrical functions return their
values in radian.

4.6 Comparison Predicates

N1l < N2 numerically less

N1l <= N2 numerically less or equal

N1 > N2 numerically greater

N1 >= N2 numerically greater or equal

N1l =:= N2 numerically identical

N1 =\= N2 numerically non-identical

Cl @< C2 lexicographically less

Cl @<= C2 lexicographically less or equal

Cl @> C2 lexicographically greater

Cl @>= C2 lexicographically greater or
equal

These predicates test whether the appropriate relation is
true for the given two arguments. The two arguments must be of
the same type; no mixed argument type arguments are allowed.
Comparison of constants means lexicographical comparison.

NOTICE: "X1 = X2" 1is a synonym of "eq" (see chapter
"Predicates Controlling Execution").

4.7 String Manipulating Predicates

string length(C,X)
Unifies the length of constant C with X.
concat(Cl,C2,X)
Unifies the concatenation of constants Cl and C2 with X.

substring(C, I, X)
substring(C,I1,I2,X)

Unifies a substring of constant C with X. This substring
begins at the Ith or Ilth character of C respectively and 1is
of the length I2 or until the end of C respectively.



Multilogic Computing Ltd Page 24

search pattern(Cl,C2,X)

Searches the first occurrence of constant €2 within the
constant Cl. If this pattern can be found then its index
otherwise zero is unified with X.

char of (I, X)

I must be in the range [1,255]. "char of" unifies X with a
single character constant of the ASCII code I.

code_of (C,X)
code_of (C, I, X)

Unifies X with the ASCII code of the first or the 1Ith
character of C.



Multilogic Computing Ltd Page 25

4.8 Window Handling

4.8.1 Window Basics
The notion of the window is the following. A window is a
rectangle on the screen defined by 5 numbers:

- row and column of upper left corner
(0 - 24, 0 - 78)

- number of rows and number of columns
(1 - 25, 1 - 80)

- attribute number which defines the foreground and
background color and the frame of the window

The colors are the normal IBM DOS color values:

0 - black

1 - blue

2 - green

3 - cyan

4 - red

5 - magenta
6 - brown

7 - white

The attribute is an integer. This number is used as a 16
bit pattern:

0 7 8 F

information about information about
the frame colors

The left side byte can have any of the following 5 values:

0 There is no frame on the window

1 single frame




Multilogic Computing Ltd Page 26

2 N double frame ]
3 vertical single, horizontal double frame
4 || vertical double, horizontal single frame

All types of frames need a one character wide border. The
size of the window always contains the rows and columns needed
for the frame.

The right byte of the attribute is divided into four parts
which have the same meaning as the original DOS attribute:

8 9 A B C D E F

blinking

background color

intensity

text color

The attribute wvalue can be calculated by the following
expression:

attr = 256 * frame type +
128 * blink bit +
16 * background color +
8 * intensity bit +

text color.



Multilogic Computing Ltd Page 27

4.8.2 Window Handling Predicates

create_window(I1l,I2,I3,I4,I5,CV)

Creates a window. Il is the number of upper row, I2 is the
number of left column, I3 is the number of rows, I4 1is the
number of columns, I5 is the attribute. If the sixth argument
is a constant C then it becomes the inner identifier of the
window otherwise the wvariable V 1is matched with a window
identifier supplied by the system.

get window (W,X1,X2,X3,X4,X5)

Unifies the last five arguments with the parameters of the
window W with the same meaning as in "create_window".

delete_window (W)

Deletes the window associated with the name W. Window
identifier W will be an atom. The window on the screen 1is not
affected.

assign_text(W,I1,I2,C)

Assigns the constant C to the window W. I1 and I2 stand for
the relative row and column number of the first character of
the assigned text calculated from the upper left corner of the
window. When opening window W this text will be displayed
automatically. The default is the empty string (see also
"read window" below) .

assign_key (W,I1,I2)

Assigns two "send" keys to the window W. Il and I2 may be
identical and must represent the ASCII code of a key. When in
the window W the system waits for input pressing one of the
two assigned keys will send the input, i.e. terminate the
input. Defaults are the Enter and Escape keys. This works only
with the use of "read window" and menu predicates.

assign_global key (L)

Assigns send keys to all windows in the system. L must be
list containing integer numbers of ASCII codes to assign or an
empty 1list. If L isn't an empty 1list "assign_global key"
assigns all of them as an additional set of send keys to all
windows. The individual send keys provided by the window
handler as default or assigned using "assign_key" are still
working. The additional send key set works wuntil another
"assign_global key" call change it. If L is empty 1list then
the additional send key set is deleted but the individual send
keys are not affected.



Multilogic Computing Ltd Page 28

open_window (W)

Opens the window W. The empty window will appear on the
screen with the assigned text if any. This predicate can also
be used to clear a previously opened window.

close_window (W)

Closes the window W leaving a black rectangle on the
screen. Its use 1is not necessary and has only been retained
for reasons of compatibility with the previous versions.

change_color (W,Il)
change color(W,I1,I2,I3,I4)

Changes the information about <colors (right byte of
attribute) of the window W to Il on the entire window or on
line I2 and column I3 for I4 character positions.

scroll window (W,N)

N must be an integer. "scroll window" scrolls the window W
up 1if N is positive and down if N is negative by the absolute
value of N lines.

write_ window(W,I1,I2,C)

Writes the constant C to the window W. Il and I2 mean the
relative row and column number of the first character of the
text calculated from the upper left corner of the window.

read window(W,I1,I2,I3, X)
read window(W,I1,I2,I3, X, X1)

Executing this predicate first the cursor appears in the
window W at relative position (I1, I2). The user can then type
in text to the window using any of the cursor and editing
keys. The input can be finished by pressing one of the "send"
keys (see "assign _keys" above). Then the argument X is unified
with a constant which 1is extracted from the window field
beginning at (I1,I2) position and length I3. X1 is unified
with the ASCII code of the send key used.

read window_text(W,I1,I2,I3, X)

Performs the same task as "read window". However the cursor
does not appear and "read window_text" only reads previously
written text from the window.

hor menu(W,I,L,I1,I2,X)

"hor menu" defines and creates a horizontal menu for
comfortable user input. W is the window that the menu uses; I
is the number of the row to be used in the window; L is a list
of sublists with the column position and the menu item; Il is
the number of the item to be highlighted first; I2 is the
highlight attribute; X is a variable that will be unified with
the item selected or with 0 if the Escape key was pressed. If



Multilogic Computing Ltd Page 29

the menu items contain only one capital letter entering this
letter chooses the first item containing that capital letter.

ver menu(W,I,L,I1,I2,X)

"ver menu" defines and <creates a vertical menu for
comfortable user input. W is the window that the menu uses; I
is the column to start at within the window; L a list with
constants as items to be displayed and returned; I1 is the
number of the item to be highlighted first; I2 1is the
highlight attribute; X is a variable that will be unified with
the item selected or with 0 if the Escape key was pressed. If
the constants contain only one capital letter entering this
letter chooses the first item containing that capital letter.
Cursor-left returns -1, cursor-right returns +1 independent of
which item was highlighted last.

4.8.3 Screen Levels

It is often necessary to preserve the contents of a screen
before opening a new window if you want to get the same state
of the screen after closing that new window. This cannot be
done using "close _window" because "close_window" clears part
of the contents of the screen. However it is possible to open
a new level of the screen and thereafter open the appropriate
window. Closing that new screen level you get the same screen
state as before. This can be thought of as if one puts a piece
of glass on the screen. The text under the piece can be seen
but text and windows displayed on it are printed only on that
piece of glass. If you return to the previous level it is as
if you take away the glass cover and look at the original
screen. There are 16 screen levels available one of which is
the actual screen level that is displayed. You can arbitrarily
switch between them.

set_screen (I)

I must be less than 16. "set_screen" makes the Ith virtual
screen appear on the display.

get_screen (X)
Unifies the number of the currently visible screen with X.

clear_ screen
clear screen(I)

Clears the currently visible screen on the display if the
first form is used or if I is the current screen. Otherwise
the Ith wvirtual screen will be cleared in the memory but the
display will not be affected.

copy_screen (Il,I2)

Copies the Ilth virtual screen to I2.



Multilogic Computing Ltd Page 30

open_level
Opens a new level.
close_level

Closes the most recently opened level.

4.9 System Handling Predicates

save_system(C)

C must be a valid filename in the current operating system.
"save system" saves the current state of the CS-PROLOG system
to the file specified by C. Later that state may be restored
with "load system".

load_system(C)
C must be a valid filename in the current operating system.

"load _system" loads the state of the CS-PROLOG system saved by
"save_system". The current state will be lost!

4.10 Operators

4.10.1 Operator Basics
An operator is characterized by its name, its type and its
priority. The type must be one of the following constants:
pf - unary prefix
sf - unary suffix
lr - binary infix left to right
rl - binary infix right to left

The priority must be an integer in the range between -3000
and 3000.

Example: If ** is defined as binary infix operator left to
right with priority 8 and ++ 1s defined as binary infix
operator right to left with priority 4 then the expression

a ** b ** ¢c ++ d ++ e

can be illustrated in the following parenthesized and tree
format:



Multilogic Computing Ltd Page 31

((a**Db ) ** c ) ++ (d ++ e )

N N
a/////\\\\b

If the direction and priority of the ** are changed to
right to left and 2 respectively then the same expression will
define a quite different term:

a** (b*t (c++ (d++te ) ) )

N
d/////\\\\é

4.10.2 Predefined Operators

The built-in operators of CS-PROLOG are the following:

Name Type Priority
i- unary prefix -3000
i- binary infix left to right -3000
, binary infix right to left -1000
< binary infix left to right 0
<= binary infix left to right 0
= binary infix left to right 0
\= binary infix left to right 0
> binary infix left to right 0
>= binary infix left to right 0



Multilogic Computing Ltd Page 32

is binary infix left to right 0
@< binary infix left to right 0
@<= binary infix left to right 0
@> binary infix left to right 0
@>= binary infix left to right 0
=:= binary infix left to right 0
=\= binary infix left to right 0
+ unary prefix 200
+ binary infix left to right 200
- unary prefix 200
- binary infix left to right 200
* binary infix left to right 300
/ binary infix left to right 300
mod binary infix left to right 400
A binary infix right to left 500

binary infix left to right 600

4.10.3 Operator Handling Predicates

add operator(C1l,C2,I)

Creates a new operator with the name Cl. C2 is the type and
I is the priority of the new operator. C2 must be the one of
the constants pf, sf, 1lr, or rl. I must be 1in the range
between -3000 and 3000.

Operators can be defined statically in the source program
as well. A clause "operator(Cl,C2,I)" has the same effect
during the LOADing, ENTERing or MODIFYing as the predicate
"add operator(Cl1l,C2,I)".

get_operator(C,X1,X2)
C must be an operator name. Unifies X1 with kind (1lr, rl,
sf, pf) and X2 with the priority of the operator C. If C 1is
not an operator name it fails. If C is defined with multiple

kind and X1 an unbound variable then the operator with the
first kind is returned considering the next order: 1lr, rl, sf,

pf.

4.11 Graphics

4.11.1 Eagle Graphics

The CS-PROLOG graphics, called "eagle graphics", is similar

to the so-called "turtle graphics". It enables the user to
draw points, 1lines, filled areas and geometric figures in a
three-dimensional space. The eagle lives in the three

dimensional space and its activity can be controlled by



Multilogic Computing Ltd Page 33

built-in graphic procedures. If the pen of the eagle is put
down it leaves 1ts path in the three-dimensional space which
is projected onto the two-dimensional display screen. The
current state of the eagle and the graphic system 1is
characterized by several system variables.

In eagle geometry there are two coordinating systems: one
is the absolute orthogonal system, the other is a relative
coordinate system which the eagle carries on his back. The
origin of the absolute three-dimensional coordinate system 1is
projected to the middle of the two-dimensional screen in such
a way that axis X 1is horizontal (positive to the right) and
axis Y is vertical (positive to the top) while axis Z points
into the screen. On the other hand axis X of the eagle's
system 1is the direction in which the eagle is facing. Axis Y
can be associated with the direction of the expanded wings of
the eagle. Axis Z 1is orthogonal to the eagle's (X,Y) plane.
The eagle can turn around any of 1its axes thereby moving its
own coordinate system.

The CS-PROLOG graphics enables the user to draw with more
than one eagle. A maximum of eight eagles may be present on
the screen. An eagle may be either awake or asleep. Eagles are
numbered from 0 to 7. Thus the eagle number must be in the
(0,7) range. Default state is that eagle number zero is awake
and all the others are asleep. All graphic predicates except
those which refer to the whole graphic system have two forms.
The shorter form performs the operation on all eagles awake.
In this case the operation is the same for all awake eagles
but the current position of each one can Dbe different
consequently its effect too. The longer form contains an extra
argument to specify the number of the eagle to carry out the
operation. In that case the eagle performs the specified
operation no matter whether it is awake or asleep. Exception:
the predicates "forward", "backward", and "fly" do nothing
when the specified eagle is asleep.

4.11.2 Eagle Activating Predicates

alive (I)
Succeeds if the Ith eagle is alive otherwise fails.
wake (I)
Wakes up the Ith eagle.
sleep(I)
Puts the Ith eagle to sleep.
sleepall

Puts all eagles to sleep.



Multilogic Computing Ltd Page 34

4.11.3 Drawing Predicates

forward (N)
forward (N, I)

Moves all awake eagles or the Ith eagle respectively
forward by N logical units.

backward (N)
backward (N, I)

Moves all awake eagles or the Ith eagle respectively
backward by N logical units.

turn (N)
turn (N, I)

Turns all awake eagles or the Ith eagle respectively around
the Z axis by N degrees.

tilt (N)
tilt (N, I)

Turns all awake eagles or the Ith eagle respectively around
the Y axis by N degrees.

twist (N)
twist (IN,I)

Turns all awake eagles or the Ith eagle respectively around
the X axis by N degrees.

fly (L)
fly (L, I)

L must have exactly three integer elements. "fly" moves all
eagles awake or the Ith eagle respectively to the point in the
three-dimensional space specified by triplet in L. The
orientation of the eagles does not change.

look (L)
look (L, I)

L must have exactly three integer elements. Turns all awake
eagles or the Ith eagle respectively in such a way that the
eagle(s) will face to the point specified by this triplet. The
position of the eagles does not change.

visible
visible (I)

If the projection is perspective and the local (X,Y) plane
of the 0th or the Ith eagle is visible from the viewpoint then
"visible" succeeds otherwise fails. This predicate is useful
for hidden lines removing in polyhedral units.



Multilogic Computing Ltd Page 35

draw_text (C)
draw_text (C,I)

Writes out the string C horizontally on the graphic screen
for all eagles awake or for the Ith eagle respectively. The
string begins on the screen near the point which 1is the
projection of the eagle's current three-dimensional position.

£ill (I1)
£ill (I1,1I2)

Fills a closed region around each eagle awake or the I2th
eagle with the color specified by Il.

4.11.4 Global Graphic State Indicators

The following predicates serve to set the global graphic
system variables and to get their current values.

graphic (CV)

If the argument is a constant it must be either "on" or
"off". "graphic" switches the screen to graphics mode or to
text mode. If its argument is a variable "graphic" unifies it
with the current screen mode. The default value is "off".

background (IV)

If the argument is an integer it must be in the range
between 0 and 15. "background" sets the Dbackground to be of
the color specified by I. If the argument 1is a variable
"background" unifies the background color with it. The default
color is 1.

palette (IV)

If the argument 1is an integer it must be either 0 or 1.
"palette" switches between the two palettes of a graphic
screen. If the argument 1s a variable "palette" unifies it
with the current palette. The default value is 1.

resolution (CV)

If the argument is a constant then it must be either "low"
or "high". "resolution" switches the resolution of the graphic
screen to the low or high resolution mode respectively. If the
argument is a variable "resolution" unifies it with current
resolution. The default value is "low".

ration (NV)

If the argument is a number it specifies the quotient of
the horizontal and wvertical physical measurement of the
screen. If the argument is a variable "ration" unifies it with
the current value of the screen ratio. The default value is 1.



Multilogic Computing Ltd Page 36

4.11.5 Graphic State Indicators For Eagles

horizont_scale(NV)
horizont_scale(NV,I)

If the first argument 1is a number it specifies the ratio
between the logical and physical width of screen considering
all awake eagles or the Ith eagle respectively. If the first
argument 1s a variable it unifies the current wvalue of the
horizontal scale of the 0th or Ith eagle respectively. The
default wvalue 1s a floating point number representing the
ratio 320/1024.

pen (CV)
pen(CV,I)

If the first argument is a constant it must be either "up"
or "down". "pen" defines the pen position of all awake eagles
or the Ith eagle respectively. If the first argument 1is a
variable it unifies the pen position of the 0th or Ith eagle
respectively. The default position is "down".

pen_color (I1V)
pen_color (I1V,I2)

If the first argument is an integer it must be in the range
between 0 and 3. "pen_color" defines the pen color of all
awake eagles or the I2th eagle respectively. If the first
argument 1is a variable it unifies the pen color of the 0th or
I2th eagle respectively. The default color on is 1.

projection (CV)
projection (CV,I)

If the first argument 1is a constant it must be either
"linear" or "perspective". "projection" specifies the
projection mode of all eagles awake or the Ith eagle
respectively. If the first argument is a variable it unifies
the projection mode of the 0Oth or Ith eagle respectively. The
default projection is "perspective". In perspective projection
you get the 2-D coordinates X, Y from the 3-D coordinates x,
y, z as follows:

X

a-b* (x-a)/ (z - ¢) and

Y

b-c* (y-Db)/ (z - c)
where a, b, ¢ are the coordinates of the viewpoint.

view_point (LV)
view_point (LV,I)

If the first argument is a 1list this 1list must contain
exactly three integer numbers. This triplet specifies the view
point in the three-dimensional space for perspective
projection considering all eagles awake or the Ith eagle
respectively. If the first argument is a variable it unifies



Multilogic Computing Ltd Page 37

the view point of the 0th or Ith eagle respectively. The
default view point is [0,0,2000]. The viewing plane is the XY
plane of the fixed coordinate system. The further the
viewpoint is from the object the bigger the projection
becomes.

position (LV)
position(LV,I)

If the first argument is a 1list this 1list must contain
exactly three integer numbers. This triplet specifies the
eagle position in the three-dimensional space considering all
eagles awake or the Ith eagle respectively. If the first
argument is a wvariable it unifies the eagle position of the
Oth or Ith eagle respectively. The default eagle position 1is
[0,0,0] which is in the middle of the screen.

head position (LV)
head position(LV,I)

If the first argument is a 1list this 1list must contain
exactly three sublists. Each sublist must contain exactly
three integer numbers. This 3 x 3 matrix specifies the eagle
orientation in the three-dimensional space considering all the
eagles awake or the Ith eagle respectively. If the first
argument is a variable it unifies the eagle orientation of the
Oth or Ith eagle respectively. The default eagle orientation
is 1[[1,0,0],[0,1,0],[0,0,1]]. This means alignment of the
eagle's axes with the fixed coordinate system.

linear map (LV)
linear map (LV,I)

If the first argument is a 1list this 1list must contain
exactly two sublists. Each sublist must contain exactly three
integer numbers. This 2 x 3 matrix describes the mapping of
the linear projection considering all eagles awake or the Ith
eagle respectively. If the first argument is a variable it
unifies the linear mapping of the 0th or Ith eagle
respectively. The default linear mapping is [[1,0,0.707],
[0,1,0.707]] which corresponds to front view. You get the 2-D
coordinates X, Y from the 3-D coordinates x, y, z as follows:

X

a*x+b*y+c*z and

Y

d*x+e*y+ £ * z

with the linear map



Multilogic Computing Ltd Page 38

[[a,b,c],[d,e, £]].

4.11.6 Miscellaneous Graphic Predicates

save_picture (C)

C must Dbe a wvalid file name 1in the current operating
system. Saves the content of the screen or the graphic screen
buffer to the file C depending on if the screen is in graphic
or text mode.

load_picture (C)

C must be the filename of a previously saved picture
created by "save_ picture". If the file cannot be found it
fails. Loads the content of the file C to the screen or the
graphic screen buffer depending on if the screen is in graphic
or text mode.

clear gr_screen

Deletes the contents of a graphic screen.

init_indicator

Gets the graphic state indicators to the default values.

reset_heading
reset_heading(I)

Sets the head orientation of all awake eagles or the Ith
eagle respectively to the default values.

hard copy

Prints the contents of the graphic screen on the printer.

4.12 Miscellaneous System Predicates

sound (N1,N2)
Beeps in N1 Hertz frequency for N2 milliseconds.
color_ mode

Succeeds if the system is in color mode and fails if it is
in black-white mode.

cpu_time (X)

Unifies X with the cpu time measured 1in milliseconds
returned by DOS.



Multilogic Computing Ltd Page 39

datetime (X)

Unifies X with a list containing the actual year (current
year minus 1900), month (0-11, January = 0), day in the year
(0-365 jan 1 = 0), day in the month (1- 31), day in the week
(0-6 Sunday=0), hour (0-24), minute, second.

pause
Waits until you press any key on the keyboard.
key pressed

Succeeds 1if any characters are waiting in the keyboard
buffer otherwise fails.

key accept (X1)
key accept (X1,X2)

Unifies the ASCII code of the next character waiting in the
keyboard buffer with X1 and unifies its scancode with X2. The
scancode refers to the position of the key pressed on the
keyboard rather than to the character it triggered. If the
buffer is empty "key accept" prompts you to enter a character.



Multilogic Computing Ltd

Page 40

egalf (X1,X2)

Succeeds if X1 and X2 are the same objects otherwise fails.

Two objects can be unifiable but not the same,

egalf (X,Y).

egalf (X,X) .

egalf([1,2],[1,2]).

eq(X,Y) ,egalf(X,Y).

make ground
make ground (X)
make ground(X,I)

fails

succeeds

fails (!)

succeeds

e.g.

Unifies each unbound variable in the term X with a unique,
newly generated constant called ground
constant is a constant different from any other constants of
The ground constants are numbered from 0 (or from
to 2716-1. The ith ground constant appears in the
output as Xi. If it 1is called without arguments it resets the

the system.
I if given)

ground constant counter

abort

Aborts the execution.

Sets the option X1 to value X2
in chapter

X1 =

X1 =

X1 =

X1 =

set_option (X1,X2)
set option (X1,X2,X3)

0

to zero.

"Programming Environment").
is given the previous wvalue of the option X1 is unified with
X3. The meaning of parameters is as follows:

sound

error on undefined

tail recursion opt.

acknowledge

print

X2
X2

X2
X2

X2
X2

X2
X2

X2
X2
X2
X2

constant. A ground

0
1

0
1

= O = o

WO

(see OPTION menu description
If the third argument

off,
on

off,
on

off,
on

off,
on

off,
trace,
dialog,
all



Multilogic Computing Ltd Page 41

garbage_collection

Performs explicitly called garbage collection. You will see
a little red window appear on the screen signalling memory
management.

random (X)

Generates a pseudo random number between [0,1] and unifies
it with X.

system(C)

C must be an atom representing a system command in the
current operating system. Performs the appropriate system
command and return to the CS-PROLOG run immediately. If the
execution of the operating system command was successful it
succeeds otherwise fails. You have to reserve some memory for
the system commands when you start the CS-PROLOG system using
the "/dosmem=N" option where N denotes the amount of memory in
Kbytes to reserve for system command execution.

port byte(I,IV)

I must be an integer within the range [0, 65535]. IV must
be either an integer within the range [0, 255] or an unbound
variable. This predicate serves for executing input/output
through hardware ports. I represents the address of the
hardware port. If IV is an integer then its numerical value as
a byte is sent to the Ith hardware port. If IV is an unbound
variable then a byte is fetched from the Ith hardware port and
its numerical value is assigned to IV. Always succeeds.



Multilogic Computing Ltd Page 42

5. Parallel Execution

5.1 Parallelism In CS-PROLOG

CS-PROLOG is an extended PROLOG system which allows
parallel execution of PROLOG goals. A "process" is assigned to
each simultaneously executed goal. A process 1is a PROLOG
subprogram and works 1like an ordinary PROLOG program except
the handling of parallel control predicates.

In a monoprocessor environment the execution of the

processes 1is controlled by an internal scheduler (quasi
parallel execution) using the next event simulation
discipline.

The processes can be created and deleted dynamically during
runtime with the built-in predicates "new" and
"delete process". 1In order to realize the synchronization
between processes they can send messages to and receive
messages from other processes by using the built-in predicates
"send" and "wait_ for". No communication through common logical
variables or Dby modification of the common database 1is
supported.

Another extension in CS-PROLOG 1is the explicit notion of
time which can be wused for discrete simulation. Time 1is
implemented as a counter clock. A CS-PROLOG time unit does not
correspond to real time nor to cpu time. In a monoprocessor
environment time is global counter clock called systemtime for
all processes in the system.

Processes can be deactivated for a definite or indefinite
period of time using the "hold" ©predicate. A process
deactivated by a "hold" predicate is said to be in "waiting"
state. A waiting process will be reactivated when the given
period of time has elapsed.

Process 1s said to be in "blocked" state when it called a
"wait_ for" predicate and waits for the arrival of a message.

A process can wailt for a message or for activation. This
latter means that the process 1is to be activated/reactivated
at a given time moment (in simulated time). The process 1is
activated when the internal (simulated) clock reaches the
waited time.

In the monoprocessor version of CS-PROLOG system the
internal scheduler controls the execution of processes because
only one process can be "active" at a time. If there are more
processes in the system they are surely in waiting state.
Scheduler allows the active process run until the process
reaches any of predicates causing 1its deactivation or it
solves its task. Then another activable process is chosen. If
there isn't activable process in a given moment systemtime is



Multilogic Computing Ltd Page 43

incremented to a point where a waiting process has to be
activated.

Since the forward execution of ©processes results a
sequentialized order of execution Dbacktrack 1is executed
backward in this path. This means that everything is undone
until the last choice point even through process change or
message sending/waiting operations.

5.2 The Scheduler of CS-PROLOG

(1) Active process

The process under execution is called the
"active process". On a single-processor computer
there may only be one "active process" at a time.

(2) Waiting process

Processes that have not been activated or are to be
reactivated at a given time (because they are
suspended for a certain time interval) are called
"waiting processes".

Every "waiting process" has a time "t" attached
which shows when the next activity of the process is
to be executed. On the waiting list the processes
are ordered by this time "t" in increasing order.
The time "t" is called the activation/reactivation
time of the process.

(3) Blocked process

Processes that are waiting for a message are called
"blocked processes".

(4) Activable processes

At a given point of time "t" the following processes
are activable:

(a) all the processes of the waiting list, the
activating/reactivating time of which is t;

the processes of the blocked list, that have
received an appropriate message;

(b) if there are no more processes of type (a)
and the activating/reactivating time of the
first member of the waiting 1list is "t1"
(€1 > t) then every process in the waiting
list that 1s entered with time "t1" as
activating/reactivating time



Multilogic Computing Ltd Page 44

In the latter case the system time is moved to time
point "t1".

Now the algorithm of the scheduler of CS-PROLOG will be the
following.

Originally system time is O.

(1) The active process will be the first one
that can be activated.

(ii) Every activity of the active process 1is
executed in sequence until an activity that
causes suspension is met or all the
activities of the process have been executed
(the process terminates successfully).

(1id) If the case is the latter one, that is there
are no more activities in the active process
and the waiting 1list 1s not empty (after
trying to find activable processes), then we
go to (i).

(iv) If there are no more activities of the
active process and all the waiting, message,
blocked 1lists are empty the CS-PROLOG
program has successfully terminated.

(v) If the active process has terminated
successfully but the Dblocked 1list is not
empty and there 1is no process that can be
activated then backtracking.

(vi) If the active process is suspended (by a
"hold", "wait_for", "wait_ for_ dnd"
predicate) and after trying to find

activable processes the waiting list 1is not
empty then (i) is executed again.

(vii) If the active process is suspended (by a
"hold", "wait_for", "wait_ for_ dnd"
predicate) and the waiting list is empty (no
activable process) but the blocked 1list is
not empty then there is no process that can
be activated so backtracking begins.

System time is always the activation time of the active
process.



Multilogic Computing Ltd Page 45

5.3 Process Manipulating Predicates

new (GOAL)

new (GOAL, NAME)

new (GOAL ,NAME, START)

new (GOAL,NAME, START, END)

Creates a new process with goal GOAL, name NAME, starting
time START, and termination time limit END. If the NAME
argument is missing the system assigns an internal name to the
new process. If there are unbound variables in the argument
NAME these are instantiated with different ground constants

(see "make ground"). If START is missing or is a variable it
is set to the actual systemtime (that is CS-PROLOG time, not
cpu time or real time!). If END is missing or is a variable it

is set to 10750.
send (MESS, PROC_LIST)

Sends a message MESS to the processes whose names are on
the PROC_LIST. If the message is sent to one process only the
PROC LIST must be a one element list. If you want to send a
message to all existing processes it can be done using an
unbound variable as PROC LIST.

wait for (MESS)

If a process executes a "wait_for" predicate and there was
a message M sent to it using the "send" predicate (see above)
and MESS and M are unifiable then the unification takes place
and the waiting process continues its execution. If there was
no such message the process is suspended until an appropriate

"send" is executed by another process.
wait for dnd(MESS)

Does the same thing as "wait_for" except that if the first
message received leads to failure and backtracking, taking in
account the other messages that might have arrived also fails
the process is suspended waiting for further messages. Thus
the suspended process continues Dbacktracking only after a

global dead-lock. (This predicate is non-deterministic and
backtrackable.)
hold(T)

The execution of the active process is suspended for T time
units. The system will activate another process. If all
processes are suspended - e.g. some via "hold", others via
"wait for" - time will advance to the next point where another

process can be activated. Then this process (or one of them if
there are several) will be activated.

delete_ process (P)

All processes whose names can be wunified with P are
deleted.



Multilogic Computing Ltd Page 46

active_process (AP)
Unifies AP with the name of the active process.
systemtime (ST)
Unifies ST with the actual CS-PROLOG simulated time.
message_arrived (X)
If there 1is a message sent to the active process and
unifiable with X then succeeds otherwise fails. X 1is not
unified with the message even if the predicate succeeds!

termination_time (P,T)

Unifies T with the prescribed termination time 1limit of
process P.

reactivation_time (P, T)

Unifies T with the prescribed reactivation time of the
process P 1if the process P has Dbeen suspended by "hold"
otherwise fails.

run (GOAL)

Initializes a CS-PROLOG execution that wuses parallel
features. A program that wuses any of the above 1listed
predicates for time dependent execution must be executed with
the "run" predicate.



Multilogic Computing Ltd Page 47

6. The Programming environment

6.1 Projects

In CS-PROLOG there 1is no real modularity but the
environment supports development of programs consisting of
several (more than one) files. The set of files forming a
program we call project. The file containing the file names of
a project we call 'project file', the PROLOG files are called
'source files'.

There are some restrictions when working with projects. One
partition (clauses with the same name) must not be split into
different source files. If you use operator declarations the
order of source files (in the project file) can be important.
If an operator 1is declared in a source file you can use it in
the rest of sources following this one.

All source file names must be different names.

6.2 Focus

In the environment of CS-PROLOG there is always a selected
source file and a particular selected clause inside this file
(unless the project 1is empty or a source file 1is empty).
Several actions are working with this selected file or clause
(such as 'exclude(file)' or 'delete(clause)'). This selection
we will call focusing, the selected clause 1is the clause we
are focused on.

The clause we are focused on is highlighted in the observer
window under the main menu. You can move the highlight (the
focus) 1inside the current source file wusing the following
keys:

Up, Down Moves highlight one clause up or
down.

PgUp, PgDn Moves highlight one page up or
down.

Home, End Moves highlight to the first or
last clause in the actual window.

Ctrl-Home, Ctrl-End Moves highlight to the very first
or to the very last clause of the
file.

There can be comments in a source file. A comment belongs
to the clause following it. So you can enter, modify and



Multilogic Computing Ltd Page 48

delete comments only focusing on this clause and then
modifying it.

6.3 Menus

In the environment you can select the action you want to
perform using menus. A menu 1is a list of identifiers, one of
these names is highlighted. You can select the desired item
either by positioning the highlight with Right and Left in
horizontal menus, with Down and Up keys in vertical menus, and
then pressing Enter. Pressing the upper-case letter contained
in the given item will select this item as well.

In several cases there are some menu items which are not
selectable (e.g. delete(clause) if there is no clause in the
source file). These items are displayed in different color.

You can always return from a menu to the previous level of
the environment pressing the Esc key. This is not true for the
main menu. You can leave the CS-PROLOG environment only
selecting the Quit item. In a vertical menu you can escape
from it not only with Esc but also pressing the Left or Right
key. In this case the next vertical menu is pulled down (if
any) .

6.4 Browsers

If you want to choose a file name or a predicate name (e.g.
to load it, or to focus on it) using a browser you have the
possibility to select it from the list of all existing names.
This means that you don't have to type in the name (of a file
or of a predicate). You get all possible names in a window,
the names are sorted in alphabetical order. One name 1is
highlighted, you can use cursor keys to choose from the list.
If all names cannot be displayed in one window, a '<' or '>'
sign indicates in the window corner that there are more items
in that direction. The function keys for the browsers are the
following:

Enter: Select the highlighted item.

Esc: Quit the browser without
selection.

Cursor keys: Move highlight.

PgUp, PgDn: Display the previous or next

portion of items.

Home, End: Move highlight to the first or
last item in the window.



Multilogic Computing Ltd Page 49

Ctrl-Home, Ctrl-End: Move highlight to the very first
or very last item in the browser.

A,B,C, ... ,Z: Move highlight to the next name
beginning with this letter.

There are three special browser types in the system, the
file-browser, the focus-browser and the Dbreakpoint-browser.
The latter one will be described in detail in the chapter
dealing with the debug facility.

6.4.1 File browser

File browsers are used to select a file name from the disk.
When it is called there is a pattern given that defines which
files are to be displayed. E.g. the pattern '*.pro' means all
files with extension 'pro'.

The file browser is a double browser. Two windows appear on
the screen. In the lower one the file names in the current
working directory are displayed that match the specified
pattern. In the upper window all subdirectories of the current
working directory are listed including the '..' (parent)
directory. You can select a file name in the lower window,
using the function keys described in the previous section, but
if you want to change directory press the

Tab

key. You will have the possibility to select a new directory
name. After selecting a directory name the new list of files
and subdirectories is displayed. To enter a path name
explicitly press the Tab key again in the upper window.

6.4.2 Focus browser

When you want to select a clause in the program to focus on
you can use the focus browser. If there is only one source
file in the project a normal browser will be displayed. If
there are more source files a double Dbrowser 1is used
(similarly to the case of the file Dbrowser). In the lower
window the clause names of the current source file are listed,
in the upper one the source file names are displayed. You can
get into the upper window pressing the

Tab

key. After selecting a new source file the new list of clause
names is displayed in the lower window.



Multilogic Computing Ltd Page 50

6.5 Editors

In the CS-PROLOG environment when you enter a text the
built in editor is wused. You can either type characters or
execute an editing function pressing a function key listed
below. There is one exceptional window - the clause editing
window (used for entering and modifying clauses) - where some
keys have a special meaning.

Esc: Quit the editor window without
entering the text.

Enter: (normal windows) Quit the editor window accepting
the entered text.

Enter: (clause edit window) Move cursor to the beginning of
the next row.

F10, Ctrl-X, Alt-X, Ctrl-Enter: (clause editing window)
Quit the editor window accepting
the entered text.

Cursor keys: Move the cursor in the window.

Home, End: Move the cursor to the top-left or
bottom-right corner of the window.

Ctrl-Left, Ctrl-Right: Move the cursor to the beginning
or end of the current line.

Ins: Switch between insert or overwrite
mode.

Del: Delete the character in the cursor
position.

Backspace: Delete the character preceding the

cursor position.

Tab, Backtab: Move cursor to the next or
previous tabulator position.

Fl: Insert an empty line wunder the
current line.

F2: Delete the current line.

F3: Split the current 1line at the
position of the cursor.

F4: Join the current 1line with the
next one.



Multilogic Computing Ltd Page 51

6.5.1 The scrap buffer

The scrap buffer contains a character string. This string
can be created with Copy to scrap or Cut to scrap command and
it can Dbe modified with the Edit scrap command (for the
description of these commands see the Edit chapter). The scrap
buffer can be inserted in an editor window using the F5 or F6
keys:

F5, F6: These functions are available only
when using the Edit-Enter or Edit-
Modify menu-items. You can insert
the scrap-buffer. F5 simply
inserts the scrap without
modifying the rest of the editor
window. F6 scrolls down the window
under the current line to make
room for the scrap.

The scrap buffer is very useful when entering clauses that
are very similar to each other.

6.6 The helpkey

On any place Pressing the helpkey you can get information
about the environment anywhere. This key is Alt-h by default
but any other key can be chosen for this purpose in the Setup
submenu. So you can read a detailed description about the
function you are currently using.

The help texts are stored in a file named:
csprolog.hlp
This file 1is searched in the current working directory and in

the directory set in the environment variable CSPHOME. If this
file is not found the help facility is not available.



Multilogic Computing Ltd

Page 52

6.7 The main menu
In this menu
activities:
File:
- Load a new

- Load a new
- Add a new,

you can choose one of the following

Changing the structure of the project.

project from the disk.
source file to the project.
empty source file to the project.

- Save the project.
- Save the source file.
- Delete a file from the project

- Select the
- Rename the

source file to focus on.
source file.

- Clear the data base.

Edit:

Changing the current source file.

- Enter a new clause.

- Modify or delete a clause.

- Load clauses from a file on the disk.

- Edit the source file with an external editor.

- Modify the
- Focus on a

scrap buffer.
specific clause.

- Search a clause containing a specific string.

eXec:

- Run a goal.

Execute a goal-sequence.

- Debug a goal.

- Run a goal

Option:

Setup:

Quit:

Help:

6.8 File submenu

and display the variable instantiations.

Set, load or save the values of the
CS-PROLOG options.

Change some global parameters of the
environment.

Exit to the operating system. If you have
modified files that have not been saved you
will be given a chance to cancel the Quit
command and save your files.

Get more help.

In this submenu vyou can change the structure of the

project.



Multilogic Computing Ltd Page 53

6.8.1 Load project

This action loads source files described in a project file
to the environment. The current project is deleted (if any).
If the current project has modified and not saved source files
the user is asked for confirmation of the deletion.

The project file is a simple text file with file names of
the source files. If the extension of a source file is the

same as the 'source file pattern' (see setup submenu), the
extension can be omitted. (This extension 1is by default:
'pro'.) When saving a project the system creates such a

project file.

Selecting the load project submenu item you are asked for
the project file name. If the extension of the file is the

same as the 'project file pattern' (see setup submenu) the
extension can be omitted. (This extension 1is by default:
'prj'.) You can enter a partially defined file name using the
wildcard characters '*' and '?'. In this case the file browser
will be invoked with this name as the pattern to match (see
the description of the file browsers). Entering an empty line
will invoke the browser with the 'project file pattern'. So if

you leave the default value of this pattern entering an empty
line you will get in the browser all files with the extension

'prj | .

If the system encounters a syntactically wrong clause an
error message 1s displayed and you can correct the clause in
an editor window. Escaping from this editor you can ignore the
incorrect clause.

After 1loading a project the focus is set to the first
clause of the first source file.

6.8.2 Load file

Loading a source file means adding a new source file to the
project. If in the new file there is a clause with the same
name as a clause 1in an old file this new clause is not added.
After the load the focus will be on the first clause of the
new source file.

Selecting the load file submenu item you are asked for the
source file name. If the extension of the file is the same as

the 'source file pattern' (see setup submenu) the extension
can be omitted. (This extension is by default: 'pro'.) You can
enter a partially defined file name using the wildcard
characters '*' and '?'. In this case the file browser will be
invoked with this name as the pattern to match (see the
description of the file browsers). Entering an empty line will
invoke the browser with the 'source file pattern'. So if you

leave the default value of this pattern entering an empty line



Multilogic Computing Ltd Page 54

you will get 1in the Dbrowser all files with the extension
'pro'.

If the system encounters a syntactically wrong clause an
error message 1s displayed and you can correct the clause in

an editor window. Escaping from this editor you can ignore the
incorrect clause.

6.8.3 New file

Selecting the new file submenu item you can create a new -

empty - source file in the project. The system asks for the
name of the new file. If the extension of the file is the same
as the 'source file ©pattern' (see setup submenu) this

extension can be omitted.

6.8.4 Save project

When you want to save a project you have to enter the
output file name. If the project was created with load project
the name of the loaded project file is displayed so you simply
have to send it with the Enter key (of course only if you
don't want to change the file name).

When saving a project only those source files are saved
which were modified.

6.8.5 Save file

You can save a source file alone without saving the
project. You are asked for the output file name in the window
you will find the original file name. If you change this name
that does not change the source file name in the project.

6.8.6 Exclude file

Selecting this menu item means the deletion of the current
source file from the project. It does not delete any file from
the disk! The clauses of the source file are deleted only from
the data base of the CS-PROLOG environment.



Multilogic Computing Ltd Page 55

6.8.7 Next file

This action serves for focusing on the next source file. If
you want to focus on a named source file use the Select file
command described in the next chapter.

6.8.8 Select file

Choosing the Select file menu item you get a browser where
you can select the source file to focus on.

6.8.9 Rename file

You can change the source file name using this command. The
renaming is done only in the CS-PROLOG environment. There 1is
no change on the disk! When the project or the file is saved
the new file name 1is used.

6.8.10 New system

This command 1is used to initialize the whole CS-PROLOG
environment. The project, source files, all dynamically added
data will be deleted. The state of the environment will be the
same as it was when you started the CS-PROLOG.

6.9 Edit submenu

The commands in this submenu serve for modification of the
current source file.

6.9.1 Enter

When vyou choose this menu item an editor window 1is opened
where vyou can type in a new clause. If the clause
syntactically is not correct an error message is displayed and
you have to correct the clause. Only one clause can be entered
at a time.

The new clause is inserted following the focused one. There
is one exception: when a partition with the same name as the
new clause exists already and the focused clause does not
belong to this partition. In this case the new clause 1is



Multilogic Computing Ltd Page 56

inserted as the first clause of this partition if the focus is
above the partition and it is inserted as the last clause if
the focus is under the partition.

After entering a new clause the focus 1is always set to
itself.

6.9.2 Modify

You can modify the focused clause. It is not allowed to
change the name of the clause. (To copy a clause (with
changes) use the Copy scrap and then Enter and then the F5 or
F6 key.)

6.9.3 Delete

Selecting this menu item the system deletes the focused
clause (without warning). The clause following the deleted one
will be the new focused clause (if the last clause is deleted
the focus will be put on the previous one).

6.9.4 Insert

Selecting the Imnsert command you can enter new clauses in
the editor window. Unlike the Enter command this command
allows to enter more than one clause. Every clause has to
begin in a new line.

The new clauses are appended to the end of the source file
even 1if the focus is not on the last clause. The first of
inserted clauses will be the new focused one.

6.9.5 Load text

This command enters new clauses from a disk file. You can
specify the file to load in the same way as it is described in
the Load file chapter.

The difference between the Load text and Load file commands
is the following. Load text loads clauses 1into the current
source file while Load file adds the file as a new source file
to the project.

The new clauses are appended to the end of the source file
even 1f the focus is not on the last clause. The first of
loaded clauses will be the new focused one.



Multilogic Computing Ltd Page 57

6.9.6 Edit external

If you want to make major changes in a source file a text
editor may be more convenient than the editing facilities of
the CS-PROLOG environment. This command makes it possible. (It
contains an implicit Save file before editing, and Load file
after editing.)

You have to specify the text editor you want to use in the
Setup - File editor menu item.

6.9.7 Copy to scrap

The character string of the focused clause is copied to the
scrap buffer. (For the definition of the scrap see the chapter
describing the Editor facilities).

6.9.8 Cut to scrap

The character string of the focused clause is copied to the
scrap buffer and then this clause is deleted. This command has
an identical effect as the Copy to scrap, Delete command
sequence.

6.9.9 Edit scrap

You can modify the scrap buffer in an editor window. There
are no syntactical restrictions for the content of the scrap.

6.9.10 Focus

You can select the clause to focus on using the cursor keys
in the main menu. If you want to specify explicitly the name
of the clause to focus on then use this command. Entering an
empty line as name invokes the focus browser (see the focus
browser chapter) where vyou can choose from the 1list of the
clause names.

6.9.11 Search

Use this command to find a clause containing a specific
string. The search begins in the clause following the focused



Multilogic Computing Ltd Page 58

one (so to search in the entire source file, you have to focus
on the top clause first). The search is performed only in the
current source file. To search in another source file you have
to focus on it first.

If an empty search string is entered the system displays
the previous search string (if any) and then it can be
reentered or modified.

6.10 Exec submenu

This submenu serves for executing CS-PROLOG goal-sequences.
When you select one of the Run, Debug and Solution menu items
you can enter a goal-sequence to execute. This sequence can be
max. one line long. If you send an empty line the system
displays the previous goal-sequence which can Dbe reentered
(after a modification if wanted).

6.10.1 Run

This command simply executes the goal-sequence. The "system
dialog window" 1s opened by default. After the execution the
environment indicates its success or failure displaying a
SUCCEED or FAIL message on the screen.

6.10.2 Debug

This menu item serves to trace CS-PROLOG goal-sequences
with the interactive debugger. The usage of the debugger is in
the next chapter.

6.10.3 Solution

If you want to execute a CS-PROLOG goal-sequence to get the
value of some output variables then use the Solution menu
item. It executes the goal-sequence and after the successful
termination the matched values are displayed for all variables
in the goal-sequence. Then then system asks:

Continue (y,n)

Answering with 'y' key will cause a backtrack and another
solution will be displayed (if any).



Multilogic Computing Ltd Page 59

6.11 Debugging CS-PROLOG programs

6.11.1 The "box" model

To explain the CS-PROLOG interactive trace facility it 1is
helpful to define the following "box model" of a predicate.
Each predicate is enclosed in a box. The box has two entering
ports and two exiting ports.

> Entry O---———-----——————————————— I + Success
_____ > [e] o _____>
° Predicate definition
- Failure ° ° < Re-Entry
<———-= U-—mmm - i <-———-
The symbols ">", "+", "<", and "-" are the symbols of the

four ports. The Entry port 1is used when a predicate 1is
evaluated at the initial invocation of the predicate. The
Success exit 1is used after successful execution. The Failure
exit is used after failed execution. The Re-Entry port is used
during back tracking when CS-PROLOG tries to find new
alternatives. If a predicate is traced all ports are displayed
on the trace screen.

6.11.2 The interactive trace

You have to enter your goalsequence in the Debug command.
CS-PROLOG will stop at the entry point of the first predicate
to be executed. Now the user can control further evaluation
with the following keys:

Down or Enter Stop at entry port of the next predicate to
be evaluated. If the current predicate has a
body the first call in that body is next to
be traced.

Right Stop at entry port of the next predicate
called after the termination of the current
one. In contrast to Down, Right does not
trace the body of a predicate but only the
predicates after its own evaluation.

Up Stop at the next entry port encountered
after terminating the execution of the
parent of the traced predicate. This means
no further stop while executing the body of
the parent.

G Go without stop to the next break point (see
below how to set break points).



Multilogic Computing Ltd Page 60

Grey + (The plus key on the numeric keypad!) Force
the executed call to succeed. The variables
are not instantiated.

Grey - (The minus key on the numeric keypad!) Force
the executed call to fail.

A, Q or Esc Abort the execution.

F5 Switch Dbetween trace screen and the main
screen of the environment. You get into the
main menu, where you can change the focus
and edit vyour program. To return to the
trace, select any item except Edit, or press

Esc.

F6 Switch between current screen and the output
screen. Press any key to return to the
trace.

S Set trace and break points (see below).

6.11.3 Setting breakpoints

The predicates of the program (both the built-in and PROLOG
predicates) can be marked as a breakpoint tracepoint or
gopoint. If a breakpoint predicate 1is called the trace stops
before calling it and the user gets the control. The trace
does not stop on tracepoints but all ports (see box model) are
displayed. Gopoint is similar to the breakpoint but when it is
called first time it looses this marking.

After typing the S command (at the trace level), the user
is asked whether he wants the 1list of built-in system
predicates or one of user defined predicates. Answer with b or
P- Next a new browser-window will appear with a 1list of the
specified predicates in alphabetic order. The first name is
highlighted. You can move the highlight with the cursor keys
and PgUp and PgDn keys, similarly as in other Dbrowsers.
Several letter-keys have here a very special function (so
pressing a letter-key does not mean highlighting the next name
beginning with it).

F Search a name. You are asked for a string,
and the highlight will be put on the name
which has the longest beginning common slice
with this string.

T Set the highlighted ©predicate to Dbe a
tracepoint.
B Set the highlighted ©predicate to Dbe a

breakpoint.



Multilogic Computing Ltd Page 61

G Set the highlighted ©predicate to Dbe a
gopoint.

U Unmark the highlighted predicate.

Cc Unmark all predicates

Enter, Esc Finish Dbreakpoint setting. Both keys have
the same effect, Esc does not undo the
markings.

1,2 ... 9: You can get the browser with as much columns

as the key you pressed. (The "~" sign at the
end of a name means that this name is longer
then the length oh the field.)

6.11.4 Debugging Parallel Execution

If there is more than one process in a CS-PROLOG program
the trace screen can be split into several windows. The trace
of different processes is displayed in different windows. The
user can specify the number of trace windows in the Setup
menu. This number can be set to 1, 2, 4, 6, 8, 9 or 12. When a
process 1is created the system asks whether this process is to
be traced or not. The answer must be y or n. If y is typed the
next free trace window is used to trace this process. The name
of the process is printed at the top of the window.

6.12 Option submenu

There are five CS-PROLOG system state wvariables, called
options, that have effect on the execution of goal. In the
Option submenu you can change the settings of these variables,
save the current settings to a disk-file, or load settings
from a previously saved file.

The options, and their possible values are the following
(the defaults are underlined) :

Sound Off No sound generated

On Sound  generated after
several functions.

Error on undefined Off If a predicate is called
and there is no definition for it
then the predicate fails.

On In this case an
'undefined predicate'’ error is
signalled.



Multilogic Computing Ltd Page 62

Tail recursion opt. Off No tail recursion
optimization is performed.

On Tail recursion
optimization 1is performed during
the execution.

Printer output Off No default output on the
printer.
Trace Trace outputs are
printed.
Dialog All input/output in
dialog windows are printed.
All All input/output are
printed.

Acknowledge On Hold output if a window
screen is  full. The execution

continues when a key is pressed.

Off Continuous output.

6.13 Setup submenu

In the Setup submenu you can change the wvalues of some
state wvariables of the CS-PROLOG environment. So these
settings have no effect on the execution only on the
environment.

6.13.1 External editor

You have the possibility to modify a source file with your
favorite text editor without leaving the CS-PROLOG environment
(see the Edit external item in the Edit submenu). You have to
specify here the editor you want to use. It can be any
executable file name. When you select the Edit external
function, the environment will issue the following operating
system call:

Editor filename

where Editor is the name you entered in the 'Setup-External
editor' function, and filename is the source file name.



Multilogic Computing Ltd Page 63

6.13.2 Source pattern

The source pattern 1is wused in source file-browsers to
select the files to display (in Load file and Load text
functions). The pattern can contain the wildcard characters
'*' and '?'. These characters have the same meaning as in the
operating system. E.g. the pattern

hux.??

means all file names that Dbegin with 'hu' and have two
character extension.

If the source pattern has the form:
* . EXT

where 'EXT! is an extension not containing wildcard
characters, this extension is used as default extension in all
places where source files are specified. So in this case you
do not have to give the extension if it is the same as the
default. The default extension is used in project files, in
Load file, New file, Save file, Rename file, and Load text
functions.

The default value for the source pattern is
*.pro

so the default 'default extension' is 'pro'.

6.13.3 Project pattern

Project pattern is the same for the project files as the
source pattern is for the source files. The project pattern
and the default project extension (if any) is used in Load
project and Save project functions. The default value for the
project pattern is

*.prj

6.13.4 Edit window size

The clause editor window 1is used when you are entering or
modifying a clause or the scrap buffer. (See the Edit submenu,
Enter, Modify, Edit scrap items.) You can set the row size of
the clause editor window using this Setup menu item. Enter
simply a number between 3 and 18. The default value is 8.



Multilogic Computing Ltd Page 64

6.13.5 Trace windows

The trace of different processes can be directed into
different windows (see the description of the interactive
trace). You can specify here the number of windows used by the
trace (max. 12). The default value is 1.

6.13.6 Deadlock detection

This command has effect only when you are debugging a
parallel program. If the deadlock detection is set to On then
when a deadlock situation occurs, while you are debugging a
parallel program, a special window opens and informs you about
the current state of the scheduler's internal lists. Pressing
a key you can continue the debugging. (Backtrack begins from
the deadlocked point.) By default the deadlock detection is
set to Off so no information appears in a deadlock situation.

6.13.7 Colors

You <can set the colors of the windows wused by the

environment. The following window groups can be set
separately:
Menus The menu and browser windows. You have to

set the color of the highlight as well.

Editors The editor windows, all windows where a text
is entered.

Observer The window under the main menu where the
clauses are displayed. You have to specify
the color of the highlight as well.

Error The window for error messages.

System dialog The window which is opened by default before
executing a goal-sequence. (This window has
the PROLOG name "system dialog window").

When vyou have selected one of the window types above a
sample window appears in the middle of the screen. You can
change the background color pressing the Up or Down keys and
the foreground color pressing the Right or Left keys. Press
Enter to set the shown colors. When setting the colors of the
menu or observer windows you have to select a color for the
highlight as well.



Multilogic Computing Ltd Page 65

After setting all colors you wanted to change return to the
main menu pressing Esc.

6.13.8 Helpkey

You can change the default setting of the helpkey (Alt-h)
to any other key. Just press the new help key. The system will
ask for the confirmation of the change. Several keys have
special meaning for the system (e.g. F1-F6, cursor keys,
Enter, etc.), it 1s not advised to overload these keys, e.g.
to use the F1 key as the help key.

6.13.9 Save setup

If you have changed several setup parameters and you want
to make these changes permanent you have to save the actual
setup using this menu item. The system creates a file named:

csprolog.ini

containing the setup parameters. When the CS-PROLOG
environment 1is called it looks for a file 'csprolog.ini' in
the current working directory. If this file is found the setup
parameters are set to values stored in the file. You can reset
the default parameters deleting the file from the disk.
Obviously 1in different directories there can be different
'csprolog.ini' files.

6.14 Help submenu

In this submenu you find three items. Choosing the Help
item you get some basic information. With Content item you can
list the titles of the help texts available. In the Manual
item you have to enter a help text number and the system
displays the help texts from the chosen one.

On the top of every help screen vyou see a headline
containing the title, the total number of help screens and the
serial number of the actual one. You can switch between help
screens using the Enter key or PgDn key to get the next, PgUp
key to get the previous and ESC key to finish. Pressing Enter
on the last page finishes the help utility too.



Multilogic Computing Ltd Page 66

7. Examples

This section contains some programming examples that
demonstrate the wuse o0f time and parallel ©processes 1in
CS-PROLOG as well as window handling and graphics. The code
for each example is completely reproduced.

7.1 Bank Robbery

This example simulates a bank robbery where the two
thieves, Jim and Dick, try to break into the MultiMoney Bank.
Jim actually enters the bank while Dick 1s waiting outside
delivering tools to Jim for opening a safe. The whole task is
explicitly time limited. Both Jim and Dick are represented as
(parallel) processes. Messages are being sent between these
processes the first to report the kind of safe found inside
the bank the second to deliver tools for opening that safe.

The following is Jim's task 1list. It tells him that in
order to succeed in the bank robbery he has to climb into the
bank, choose a safe, report the kind of safe to Dick who is
waiting outside, wait for special tools for opening that
reported safe, open the safe and finally take all wvaluables
from inside the safe outside the bank. Note that "safe" is a
predicate that is true if its only argument is a wvalid safe
while "SAFE" is a variable with the name of an actual safe as
its value.

jim gets_the_money (BANK) : -
jim _climbs into (BANK), chooses (SAFE),
send (safe (SAFE) , [dick]), wait_for(tools(TOOLS)) ,
opens (SAFE, TOOLS) , outputs (SAFE, BANK) .

This is Dick's task list:

dick gets_the money (BANK) : -
wait for (safe (SAFE)), has(TOOLS, SAFE),
send (tools (TOOLS) , [jim]) .

Following are three choices of a safe inside MultiMoney
Bank:

chooses (wertheim) .
chooses (milner) .
chooses (chatwood) .

There are tools for opening a safe available only for the
Milner and Chatwood safe:

has (tool_set a,milner).

has (tool_set b,chatwood) .



Multilogic Computing Ltd Page 67

Climbing into the bank takes Jim five logical time units:

jim climbs into (BANK) : -
during (5) .

Opening the Milner safe takes 40 logical time wunits,
opening the Chatwood safe takes only 10 time units:

opens (milner, TOOLS) : -
during (40) .

opens (chatwood, TOOLS) : -
during(10).

This is to report the result on the display:

outputs (SAFE, BANK) : -
systemtime (T) ,
write ("The thieves got the money from the safe"),
write (SAFE), write(" in the "), write (BANK),
write (" Bank at time "), write(T), write(.), nl.

"during" is a synonym for "hold":

during (T) : -
hold(T) .

The toplevel ©predicate comes next. Two processes are
initialized. "dick" and "jim" are the names of the processes.
Their start time is 0 and their prescribed termination time is
25. Start the program with "run(problem).".

problem: -
new (dick_gets_the money (multi_money), dick, 0, 25),
new (jim gets_the money (multi_money), Jjim, 0, 25).

Backtracking will occur because
there are no tools for the Wertheim safe

opening the Milner safe would take too long (40 time
units for opening the safe plus 5 time units for
entering the bank would exceed the time limit of 25
time units).

It 1is recommended to have at least two trace windows
configured and trace the Dick and Jim processes.

7.2 Prime Number Generation

This is a wvery tricky implementation of the sieve of
Eratosthenes algorithm. A global variable "prime number" has
either of the two wvalues "on" or "off". If it 1is on the
current number 1is a prime number. Every prime number will
initiate a new process that will set the "prime number"



Multilogic Computing Ltd Page 68

variable to "off" at every multiple of itself starting from
its square product (below p2 smaller multiples of that prime
number are turned "off" by smaller prime numbers). Numbers are
actually time units. Thus one could summarize that program as
follows: time proceeds and every number not being a prime
number will be turned "off" by a prime number that is a factor
of that number. Prime numbers actually fall through that sieve
of prime number processes. The program terminates when the
stack overflows.

Next 1s a recoursive loop to check whether the actual
number that 1is the actual CS-PROLOG time 1is a prime number.
"hold (1) " causes to try the next number.

number generatlon -
hold (1), is prime number, number generation.

A number is a prime number if the "prime number" variable
is set to "on". If this is the case print the prime number and
initiate a new prime number process:

is_prime number:-
get_value (prime number,off), !,
set value(prlme number,on) .

is_prime number:-
systemtime(T) , write(T), nl, TT is T * T,
new (sieve (T) , [sieve, T],TT).

Next is the predicate for a prime number process. It 1is
activated only every T time unit which corresponds to all
integer multiples of T.

sieve(T) : -
set_value (prime number,off), hold(T), sieve(T).

Now follows the toplevel predicate. It creates the number
generating process at time 1 with the name "generator":

sieve start:-
set __value (prime_number, on), new(number generation,
generator, 1).

Start the program with "run(sieve_start) ."

7.3 Sorting In Time

This example program produces an ordered output of all
numbers of the form 2”n * 3”m. The algorithm used involves
four processes. The "copy" process to print out a number and
recoursively wait for the next one; the processes "mult2" and
"mult3" that produce the multiples of two and three; and the
process "merge" that compares the multiples that it receives
from "mult2" and "mult3". This is surely a very inefficient
way to produce the desired list but it is an excellent example



Multilogic Computing Ltd Page 69

of how communication between processes works in the course of
time.

The main predicate for the "copy" process:

copy: -
wait for (numb (X)), write(X), nl,
send (numb (X) , [mult2]), send(numb (X), [mult3]), copy.

Next comes the main predicate for the "mult2" and "mult3"
processes. FAC 1s a parameter that makes "pmult" a generic
predicate, i.e. one that stands for a class of predicates in
this instance the class of multipliers.

pmult (FAC) : -
wait for(numb(X)), Y is X * FAC, send(numb(Y, FAC),
[merge]), pmult (FAC).
The main predicate for the "merge" process:
merge (N2 ,N3) : -
receive (2,N2,NN2), receive(3,N3,NN3),
submerge (NN2 ,NN3) .

The predicate to wait for and receive input from the "mult"
processes:

receive (FAC,0,N) : -
!, wait_for (numb(N,FAC)) .

receive (FAC,N,N) .
"submerge" compares two numbers and branches:

submerge (N2 ,N3) : -
N2 < N3, send(numb (N2), [copy]), merge(0,N3).

submerge (N2 ,N3) : -
N3 < N2, send(numb (N3), [copy]), merge(N2,0).

submerge (N2 ,N3) : -
N3 = N2, send(numb (N3), [copy]), merge(0,0).

The toplevel predicate initiates the four processes and
sends the first message:

goal: -
new (copy,copy) , new(pmult(2) ,mult2),
new (pmult(3) ,mult3), new(merge(0,0) merge),
send (numb (1) , [copy]) .

Start the program with "run(goal) .".



Multilogic Computing Ltd Page 70

7.4 Shortest Path Search

This example program finds the shortest path from a start
node to a goal node via breadth-first search. The very
interesting feature of this implementation is that the results
are almost a side effect of the travelling of certain
"messenger" processes along that network. The program has two
parts. The first part the network is established from facts

about connections between nodes. In the second part
"messenger" processes - actually they are named "mess (NODE,
X)" - are made to travel along the edges of the network. Every

edge that has been travelled along is removed immediately. The
time required to get from one node to the next is proportional
to the distance encoded in the network. The messengers
actually wait as much (logical) time in the program until they
arrive at the destination goal. Every messenger that arrives
at one node also deletes any other messengers that are in the
same node.

The Dbehavior of all the messenger processes can be
summarized as follows: starting from a start node a messenger
takes off in every direction. It is made sure that no path is
travelled twice. The messengers one after the other arrive at
their destination nodes. When they arrive they print out the
node they are at and the time since they began their journey.
From that node new messengers are sent out in any available
direction who behave exactly as their parent. If there are no
more nodes for any messenger to visit the program ends. The
output is an ordered list of the distances from the start node
to any other accessible node in the network.

The main predicate for the "messenger" processes:

messenger (NODE, LABEL) : -
hold (LABEL) , delete_process (mess (NODE, X)),
print out (NODE) , create new_messengers (NODE) .

The output predicate:

print_out (NODE) : -
systemtime (T) , write_spaces(40), write("to node "),
write (NODE), write(" is "), write(T), nl.

The predicate to initiate new messengers from a node in any
available direction. It is recoursive:

create_new_messengers (NODE) : -
del edge (NODE,NODE1l,LABEL), !,
new (messenger (NODE1,LABEL) , mess (NODE1l, X)),
create_new_messengers (NODE) .

create_new_messengers (NODE) .



Multilogic Computing Ltd Page 71

Next comes the predicate to remove paths that have been
travelled along. It accounts for the fact that on a path from
A to B you can also get from B to A. This saves 50% of the
edges.

del edge (NODE,NODE1l,LABEL) : -
clause (edge (NODE,NODE1 , LABEL) ,N) ,
suppress_clause (edge,N), !.

del edge (NODE,NODE1l,LABEL) : -
clause (edge (NODE1,NODE, LABEL) ,N) ,
suppress_clause (edge,N) .

The start up predicate for the second part of the problem:

start messengers (START NODE) : -
write ("The shortest path starting from node "),
write (START NODE), nl,
create_new_messengers (START NODE) .

The predicate to construct the network from connection
data:

construct _graph:-
delete partition(edge), connected(A,B,L),
add_clause(edge(A,B,L)), fail.

construct graph.

The toplevel predicate to start the program:

path problem:-
construct graph, start messengers(l).

Start the program with "run(path_problem).".

Connection data. First two arguments are node numbers the
third is a numerical measure of distance:

connected(1,2,25).
connected(1,3,10).
connected(1,7,100).
connected(2,5,10).
connected(2,4,40).
connected(3,4,15).
connected(4,7,35).
connected(5,6,35).

connected(5,7,25).



Multilogic Computing Ltd Page 72

7.5 Effects Of The "wait_ for" Predicates

This 1is a short example to illustrate the differences
between "wait_ for", "wait_ for nd", and "wait for dnd". Process

b checks whether it gets a message m(3). If "wait" is
"wait for" b fails after trying the message m(l). No
backtracking before the message. If "wait" 1is "wait_ for nd"
process b fails after trying m(l) and m(2). Here 1is no

backtracking before commitment on process b. If "wait" 1is
"wait_ for dnd" process b fails after trying the messages m(1)
and m(2). Then process e gets selected, it activates process ¢
which in turn sends m(3) to process b. Now process b succeeds.
Start the example with a "run(a)" call.

a:-new(b,b), new(c,c), new(d,d), new(e,e).

b:-wait(m(X), write(tried(X)), nl, X=3, write(ok).

c:-wait for(mm), send(m(3), [b]).

d:-send(m(1l), [b]), send(m(2), [b]).

e:-send (mm, [c]) .

7.6 Graphics Example

This program 1illustrates the use of some of the graphic
predicates. Start the drawing of six cubes with "a"

repeat (I).

repeat (I) :-
I>1, IT is I - 1, repeat(II).

a :-
graphic(on), init_indicator, clear gr screen, init,
eagle_wake, draw, pause, graphic(off).

init :-

background (0) , palette(0).

eagle_wake :-
wake (0) , wake (1), wake(2), wake(3), wake(4),
wake (5) , view_point([0.0,700.0,2000.0]), pen(up),
backward (60) , backward(300,1), backward(300,4),
forward (300,2), forward(300,5), turn(90),
backward (300,3), backward(300,4), backward(300,5),
turn(-90), tilt(30), forward(180), tilt(90),
pen (down) .

draw :-
cube.



Multilogic Computing Ltd Page 73

square :-
repeat(4), forward(180), turn(90), fail.

square.

cube :-
square, fill square(2), forward(180), tilt(90),
square, £ill™ _square(2), forward(180), tilt(90),
pen_ color (3), square, fill square(3), pen _color(1l),
square, forward(180), tilt(90), square,
forward (180), tilt(90).

fill square(C) :-
pen(up), turn(l10), forward(50), £ill(C),
backward (50) , turn(-10), pen(down).

7.7 Windows And Menus

This program displays a menu on the screen. The menu
contains all arguments for the predicate "create_ window".
Using the cursor keys and the Enter and ESC keys it is
possible to assign values for each of the arguments. Selecting
the "Draw" item a window according to the chosen parameters is
displayed. The appropriate call of "create_window" is shown in
another window. Pay attention to the use of "open level" and
"close_level". Start the whole thing with "main".

main: -
init_setting, setting("Draw").

"init setting" initializes nine global variables that hold
the information about the window to be created and creates
itself four windows for the input/output. "create_ver windows"
creates another five windows for the five items of the main
menu.

init_setting:-
set_value(frame,0), set_value(back ground,k0),
set value(fore _ground, 7), set value(1ntens1ty 0),
set value(bllnklng 0), set value("Top row",0),
set_value("Left col",0), set_value("Row s1ze" ,3),
set_value("Col size",3),
create_window(0,0,3,80,366,main_w),
open ! w1ndow(ma1n w), create ver w1ndows,
create_window (8, 60,3,5,366,coord L W),
create w1ndow(8 30,3, 20 1102 error w),
assign_ text(error w, 1 5, "Wrong data"),
create w1ndow(24 0, 1 80 110, show_set w)

create_ver windows:-
create_window(2,3,7,18,366, "Frame"),
create_window(2,13,10,12,366, "Background"),
create w1ndow(2 26,10,12,366,fOreground) ,
create w1ndow(2 41,4, 18 366 "oTher attrs"),
create_w1ndow(2 56,6,12,366,"Coordinates") .



Multilogic Computing Ltd Page 74

"setting" and "continue" make an alternating-recoursive
loop for interaction with the main menu.

setting (FIRST) : -
hor menu(main w,1,[[3,"Frame"], [13,"Background"],
[26,fOreground], [41,"oTher
attrs"], [56,"Coordinates"], [71,"Draw"]],
FIRST,14,X), submenu(X,I), show_setting,
continue (X, I).

continue(0,I):- !.

continue(X,I):-
is num(I), !,
nth_elem(["Frame", "Background",6 fOreground,
"oTher attrs","Coordinates",'"Draw"],X,N), N1 is N +
I, setting(N1l).

continue(X,I):-
setting(X) .

"submenu" and "ver_data" organize the pop-up menus of the
main menu:

submenu(0,I):- !. % ESC key pressed

submenu ("Draw", "Draw") :
get_attribute (ATTR), get value ("Top row",TL),
get_: ~value ("Left col",LC), get_value ("Row size" , RS),
get_: “value ("Col size",CS),
create_window (TL,LC,RS,CS,ATTR,show_w), open level,
open_w1ndow(show_w), pause, close_level

submenu (X, I):
ver data(X ITEMS,FIRST) , open_level, open_window (X),
ver menu(X 2,ITEMS,FIRST,14,I), set data(x ITEMS,I),
close_level

ver data("Frame", ["No
frame","Single","Double","sIngle double",
"dOuble single"],F) :-
get_value (frame,Fl), F is F1 + 1

ver data ("Background",
T"Black", bLue,"Green" "Cyan","Red","Magenta", brOwn,
"White"],F):
get_value(back_ground,Fl), F is F1 + 1

ver data (fOreground,
T"Black", bLue,"Green" "Cyan","Red","Magenta", brOwn,
"White"],F):
get_value(fore_ground,Fl), F is F1 + 1

ver data("oTher attrs",[II,BI],1):-
get_intensity(II), get blinking(BI).

ver data("Coordinates",["Top row","Left col",
"Row size","Col size"],1).



Multilogic Computing Ltd Page 75

The intensity menu item is variable:

get_intensity("no Intensive"):-
get_value (intensity,0).

get_intensity("Intensive") :-
get_value (intensity,1).

get blinking("no Blinking"):-
get_value (blinking,0).

get_blinking("Blinking") :-
get_value (blinking,1).

Reading and storing user input:

set _data(X,Y,0):- !. %ESC key pressed
set data(X,Y,-1):- !. S%cursor-left pressed
set _data(X,Y,1):- !. %cursor-right pressed

set _data("Coordinates" , ITEMS, I):
open_window (coord w), get - value(I V),
write_ to_string(s, V), write _window(coord w,1,1,8),
edit data(I)

set data(X,ITEMS,I):-
', nth_elem(ITEMS,I,N), Nl is N - 1,
set_datal (X,N1).

edit_data(I):-
edit datal(I), !.

edit_data(I):-
open_ level, open window(error w), pause,
close level, edit _data(I).

edit _datal(I):
read w1ndow(coord w,1,1,3,S,13), !,
concat(sS," ",S1), read from L string(S1,V), is_int(V),
set_value(I, V)

edit datal(I).



Multilogic Computing Ltd Page 76

set _datal ("Frame" ,N) : -
!, set_value(frame, N).

set_datal ("Background",N) : -
!, set_value(back_ground,N).

set _datal (fOreground,N) : -
!, set_value(fore_ground, N).

set _datal ("oTher attrs",0):
', get value(lnten51ty X), X1 is 1 - X,
set value(1ntens1ty X1).

set _datal ("oTher attrs",1):
', get value(bllnklng X), X1l is 1 - X,
set value(bllnklng X1) .

How to calculate the attribute number:

get_attribute (ATTR) :
get_value (frame, F), get_value (blinking,B),
get ~value (back _ground, BC), get_: value(1ntens1ty I),
get value(fore_ground FC) , ATTR is 256*F + 128*B +
16*BC + 8*I + FC.

This predicates shows the current values of the window
parameters in the bottom line display.

show_setting:-
get_attribute (ATTR), get value("Top row",TL),
get_: ~value ("Left col",LC), get_value("Row size" , RS),
get “value ("Col size",CS), write to _string(S,
create_window (TL,LC,RS,CS,ATTR, window _name) ),
open w1ndow(show set w),
write w1ndow(show set w,0,20,S).

"nth _elem" is an auxiliary predicate.
nth elem([X|L] ,X,1):-
1

nth elem([Y|L],X,/N):-
nth elem(L,X,N1), N is N1 + 1



Multilogic Computing Ltd Page 77

8. External C Interface

The CS-PROLOG system enables you to write your own built-in
predicates in C language. A special C function set is supplied
for parameter handling, memory allocation, <choice point
handling (for nondeterministic Dbuilt in predicates). The C
interface function set is slightly different for the
interpreter and the compiler in some cases. The following
description will warn vyou when there 1s an incompatibility
between them. The recommended compiler to be used is the
Microsoft C compiler V 6.0. with the large memory model.

8.1 Global Items

The following global constant and structures are defined in
the "INTERFAC.INC" header file.

Predefined constants used in interface functions

nil
true
false

Error numbers that can be returned by a built-in predicate

non_atom argument
non numeric_argument
memory full
cannot_open file
cannot__ close file
no_| more disk . _space
syntax error
wrong_arg_ no
floatlng_p01nt error
non_opened file
non_integer argument
non_lmplemented
non_positive_argument
io error

1llegal number
1llegal list

Flags representing different kinds of data in CS-PROLOG
are:

t empty

t float
t_atom

t fix

t nil

t _struct
t list



Multilogic Computing Ltd Page 78

Basic data type for the internal data representation of
CS-PROLOG 1is

csp_cell
For the compiler an additional data type is used
extb choice_point

Two global cells representing the internal form of the
empty list and unbound wvariable

csp_cell nil cell;
csp_cell empty cell;

The "empty cell" can be used only to construct lists and
structures containing unbound variables. Never use
"empty cell" as a parameter of "unify cell". If you want to
unify two different empty variables then build them into a
structure or list and retrieve from this structure or list the
cell representing the variables and then unify them.

8.2 The C Interface Function Set

int get nth arg(int arg no, csp_cell *cell);

"cell" is the "arg no"-th argument of the called built-in
predicate. If "arg no" 1is =zero or greater then the actual
number of arguments then "wrong arg no" is returned otherwise
"true" is returned.

int put nth _arg(int arg no, csp_cell cell);

The "arg no"-th argument of the called built-in predicate

is unified with the "cell". It returns "true" is the
unification was successful, "false" if it was not. Any other
return number means error (memory full). If the unification is

"false" then the variable bindings are not undone that means
that if this function call fails then the built in predicate
must return "false" as well.

int get _cell type(csp_cell cell);

Returns the type of "cell":

t_empty unbound variable

t float float number

t_atom atom (symbol)

t fix fix number

t nil empty list

t struct functional expression

t list list (non empty)



Multilogic Computing Ltd Page 79

int get_int cell(csp_cell cell, int *value);

If the type of "cell" is not "t_fix" then returns "false"
otherwise "true". The number represented by "cell" is assigned
to "value".

int get_float cell(csp_cell cell, double *value);

If the type of "cell" is not "t_float" then returns "false"
otherwise "true". The float number represented by "cell" 1is
assigned to "wvalue".

int get_atom cell(csp_cell cell, char **value);

If the type of "cell" is not "t_atom" then returns "false"
otherwise "true". The string represented by "cell" is assigned
to "value". It is very important that "wvalue" is the pointer
which points to the char sequence in CS-PROLOG memory tables.
That means that the user must not change the content of this
string! (You can only read this string.)

int get_list head(csp_cell list, csp_cell *head):;

If the type of "cell" is not "t_list" then returns "false"
otherwise "true". The head of the 1list represented by "cell"
is assigned to "head".

int get_list_tail(csp_cell list, csp_cell *tail);

If the type of "cell" is not "t_list" then returns "false"
otherwise "true". The tail of the 1list represented by "cell"
is assigned to "tail".

int get file cell(csp _cell f cell, FILE **file p);

If the type of "f cell" 1is not "t_atom" then returns
"false". Furthermore if "f cell" does not represent a
CS-PROLOG file identifier then returns "false". Otherwise it
returns 1in 1its second argument a pointer to that FILE
structure (defined in the "stdio.h" header file) which
describes the named file.

int get_struct_functor(csp_cell s cell,
csp_cell *name,
int *arity);

If the type of "cell" 1is not "t struct" then returns
"false" otherwise "true". The name and arity (number of
arguments) of the functional expression represented by "cell"
is assigned to "name" and "arity".

int get_struct_arg(csp_cell s _cell, int arg no,
csp_cell *argq);

If the type of "cell" 1is not "t struct" then returns
"false". If "arg no" 1is greater then the actual number of
arguments then returns "wrong arg no" otherwise "true". The
"arg no"-th argument of the functional expression represented



Multilogic Computing Ltd Page 80

by "cell" is assigned to "arg". If "arg no" is zero "arg" is
the name of "cell".

int make_int cell(int value, csp_cell *cell);

"cell" is made to represent a fix number of value "value".
Returns "true".

int make_float_cell (double value, csp_cell *cell);

"cell" is made to represent a float number of value
"value". Returns "true" or a value meaning memory full.

int make_atom cell (char *value, csp_cell *cell);

"cell" is made to represent an atom value "wvalue". Returns
"true" or a value meaning memory full.

int make_list cell(csp_cell head, csp_cell tail,
csp_cell *list);

"cell" is made to represent a list with head "head" and
tail "tail". Returns "true" or a value meaning memory full.

int make_struct_cell (csp_cell name, int arity,
csp_cell args|],
csp_cell *s cell);

"cell" is made to represent a functional expression with
name "name", arity "arity" and arguments "args". Returns
"true" or a value meaning memory full.

int unify cell(csp_cell celll, csp_cell cell2);

"celll" is unified with the "cell2". It returns "true" is
the unification was successful, "false" if it was not. Any
other return number means error (memory full). If the

unification 1is "false" then the wvariable bindings are not
undone that means that if this function call fails then the
built in predicate must return "false" as well.

int try unify cell(csp_cell celll,
csp_cell cell2);

"celll" is unified with the "cell2". It returns "true" is
the unification was successful, "false" if it was not. Any
other return number means error (memory full). If the

unification is "false" then the variable bindings are undone
that means that if this function call fails then the built in
predicate can continue and can succeed.

For interpreter:
int make_trail note(int (*f) (), csp_cell note);
This function has to be used by "backtrackable" built-in

predicates to remove the effect of the predicate while
backtracking. If the backtrack reaches the point of calling



Multilogic Computing Ltd Page 81

this predicate the function "f" 1is called with argument
"note". If a csp cell is not enough to store the information
needed to undo the global effects then an amount of memory has
to be allocated using function "esp_alloc" and the pointer
returned by 1t can be stored in a csp cell. Don't use the

"long" returned by "csp_alloc"  as argument in
"make trail note" and "f" because the size of "csp_cell" is
not always equal to the size of "long" (better assign the

"long" value to a csp cell and vice versa).
For compiler:

The above function in the compiler version is replaced a
pair of functions. The first of them serves for preparing the
trail entry, the other one putting the trail entry into the
trail stack.

int trail block register (int size, long cell mask,
long proc_mask,
int (*£) ()’

This function prepares the trail array and it has to be
called only once for every backtrackable user defined built-in
predicate as a kind of initialization. The trail array is an
array of csp cells (max 32). Among these csp cells you may
want to store C pointers too. In this case pointers have to be
appear as long unsigned numbers. You have to specify

size
size of the trail array (the number of csp cells)

cell mask

Each bit of the mask corresponds to a csp cell in
the trail entry. (The least significant bit to the
Oth entry). If the Ith entry is a C pointer then the
Ith bit has to be 0 otherwise 1.

proc_mask
reserved (0).

f

the address of the function which will be called on
backtracking by the system. The system supplies the
address of the trail array as its single argument.

This function returns an integer number which identifies
the trail array to be used later in a "make_trail note" call.

int make_trail note(int tr_entry id,
csp_cell *tr array);

This function has to be called every time when you want
make a trail note. The first argument is the trail array
identifier got from the "trail block register" <call. The
second argument is the address of the trail array.



Multilogic Computing Ltd Page 82

long csp_alloc(unsigned len) ;

This functions allocates a piece of memory of size "len"
and returns a pointer (of type "long") which cannot be used
directly to address the memory only passing as an argument to
"csp addr". Value "nil" means memory full.

char huge *csp_addr(long p);

This function returns the absolute address of the memory
allocated by "esp_alloc" and represented by pointer "p"

int csp_rel(long p, unsigned len);
This function releases the memory allocated by "csp_alloc".
For interpreter:
int create_choice();
Used in nondeterministic built-in procedures it creates the
possibility for successive alternatives of the procedure. This

call has to precede any function creating structure or 1list
and any "unify cell" call. It must be followed by a

"set_choice" or a '"destroy choice" function call Dbefore
returning. "create_choice" returns "true" or an error (memory
full).

For compiler:

int create_choice(int argno,
extb choice_point *extb retry);

The effect of this function is similar to the interpreter's
one only the parameter passing differs. The first argument is
the arity of your built-in predicate. The second argument has
to be the address of a "extb choice point" type structure
variable. On return "create_choice" fills this structure. In
the compiler's case the same C function is activated at first
occasion as at the subsequent choices. So the user has provide
at least one extra argument in order to be able to
differentiate Dbetween these two cases. The extra arguments
also serve for storing the information to be passed from one
activation to the next one. On PROLOG level the extra
arguments have to be initialized with definite wvalues that the
first activation will recognize.

For interpreter:
int set_choice(int (* cont_func) (), csp_cell u);

When the Dbacktrack reaches this point the interpretation
continues with calling "cont func" with argument "u". If a
csp cell is not enough to store the information needed to call
the next alternative then an amount of memory has to be
allocated wusing the function "esp_alloc" and the pointer
returned by it can be stored in a csp cell. Don't use the
"long" returned by "ecsp_alloc" as argument in "set_choice" and



Multilogic Computing Ltd Page 83

"cont_func" because the size of "csp_cell" is not always equal

to the size of "long". The call of wbont_func" must terminate
with calling "set_choice" if there are more alternatives or
with calling "destroy choice" if there are not. "set_choice"

returns "true" or an error (memory full).
For compiler:
int set_choice_arg(int argnum, csp cell cell);

Rewrites the "argnum"-th argument of the built-in predicate
with "cell" on the current choice point.

int destroy choice();

When a nondeterministic predicate doesn't want to succeed
any more it has to call "destroy choice" and return "fail".
This function always returns "fail".

Never store CS-PROLOG data (csp cells returned by interface
functions) to global variables since they can Dbe garbage
collected. So any information for communication between
built-in predicates has to be stored in memory allocated by
"csp_alloc" except that the arguments and parts of arguments
of nondeterministic predicates can be stored between
successive calls.

8.3 Installation Of User Extensions For Interpreter

The CS-PROLOG diskettes supply three files to enable you to
create your own extended interpreter:

INTERFACE.INC header file containing the global
constants and structures and prototypes of the
external C functions.

COPROLOG.LIB The whole CS-PROLOG interpreter in a
library

CSPFACE.EXE Auxiliary program (See later)

The installation process of vyour own extension 1is the
following:

1. Create your C program using the C interface function
set explained above. Don't forget to include the
"INTERFACE.INC" header file.

2. Compile your C program. For compilation use the /AL
option of the Microsoft C compiler as CS-PROLOG does
itself.



Multilogic Computing Ltd Page 84

3.

Put the names of all user-written built-in
predicates to a file under an arbitrary name. Every
name should be in separate 1lines. This file 1is
called external name file.

Then run the auxiliary program CSPFACE:
CSPFACE input_bds output bds user nam

The "input bds" is the binary file that is to be
extended. It may be either the COPxxxxx.BDS file
delivered with the CS-PROLOG interpreter or a
previously extended binary file. "output_bds" is the
name of the new extended binary file. The "user_ nam"
is the name of the external name file.

The CSPFACE program performs two tasks.

It extends the "input bds" file onto the
"output_bds" file inserting the names listed in
"user_nam" into it.

It generates a file named NPUSER.C. This file 1is a
small C source program. You doesn't have to
understand the content of this file.

Compile NPUSER.C the same way as you have compiled
your c program in the 2nd step.

Link your interpreter from your source program
object file, NPUSER.OBJ and the appropriate
CS-PROLOG library.

LINK @file name
A sample link file for "file name" should be:

objl obj2 ... obj_n npuser
myexe

llibce coprolog+

/STACK:8192 /NOEXTDICTIONARY+
/FARCALLTRANSLATION /PACKCODE+
/NODEFAULTLIBRARYSEARCH;

The file "objl", "obj2", ... are the objects of your
source program, "myexe" 1is the name given to the
interpreter. Don't forget the options, they all are
very important!

Invoke your extended interpreter typing

MYEXE MYPROG.BDS

at the DOS prompt.



Multilogic Computing Ltd Page 85

8.4 Installation Of User Extensions For Compiler

The CS-PROLOG compiler diskettes supply three files to
enable vyou to create your own extended compiler runtime
system:

INTERFACE.INC header file containing the global
constants and structures and prototypes of the
external C functions.

CSPCOMP. LIB The whole CS-PROLOG compiler runtime
system in a library

CSPCUGEN . EXE Auxiliary program (See later)

The installation process of your own extension 1is the
following:

1. Create your C program using the C interface function
set explained above. Don't forget to include the
"INTERFACE.INC" header file.

2. Compile your C program. For compilation use the /AL
option of the Microsoft C compiler as CS-PROLOG
compiler runtime system does itself.

3. Put the names of all user-written built-in
predicates to a file under an arbitrary name. Every
name should be 1in separate 1lines. This file 1is
called external name file.

4. Then run the auxiliary program CSPCUGEN:
CSPCUGEN user nam user_nam C

where '"user nam" is the external name file and
"user nam c" is a filename under which of a small C
source file will Dbe generated Dby CSPCUGEN. You
doesn't have to understand the content of this file.

5. Compile "user nam c" file the same way as you have

compiled your C program in the 2nd step.

6. Invoke the CS-PROLOG compiler using the "-ext"
option:

CSPCOMP my prog -EXT:user nam
where "my prog" 1is the PROLOG program using the
user-written built-in predicates and "user_nam" is
the name of the external name file.
7. Link vyour compiler runtime system from your source
program object file, the object file of "user_nam c"
and the appropriate CS-PROLOG library.

LINK @file name



Multilogic Computing Ltd Page 86

A sample link file for "file name" should be:

objl obj2 ... obj n user nam c
myexe

/NOD:1libce llibcer api cspcomp+
/STACK:20480 /SEGMENT:234;

The file "objl", "obj2", ... are the objects of your
source program. "user nam c" stands for the object
file of the small C program generated by CSPCUGEN.
"myexe" will be the name of your extended runtime

system. Don't forget the options, they all are very
important!

8. To run your extended system you have to set a DOS
environment variable:

SET CSPPROG=my_prog

where "my prog" is the name of the PROLOG program to
be run.

9. Invoke
myexe

at the DOS prompt.



Multilogic Computing Ltd Page 87

9. The CS-PROLOG Compiler
System

9.1 The CS-PROLOG Compiler

The compiler consists of two files:
- CSPCOMP.EXE the executable file, the compiler itself
- CSPCOMP.BIN internal data file for the compiler

The "CSPCOMP.BIN" is searched always in the same directory
where the compiler is, so copying the compiler to a directory
(not necessarily the working directory) copy the ".BIN" file
as well.

The compiler generates code in an object format that is
loaded dynamically by the runtime system so no linkage 1is
necessary after compilation. The invocation of the compiler
has the following form:

CSPCOMP pro_name [options ...]

The "pro_name" is the name of the CS-PROLOG program to be
compiled without extension since ".PRO" extension is assumed.
The generated code is stored in the file "pro _name.LDF" if the
compilation was successful. The generated code contains only
those built-in predicates that are called statically in the

program (unless you specify the "-blt" option). The options
begin with "-". The following options are available:
-noblt

If there are no such built-in predicate which would
be called as metacalls or called by dynamic clauses
added dynamically this option may be given. It
ensures that only those CS-PROLOG built-in
predicates are 1included into the generated code
which are explicitly used.

For efficiency purposes in the generated code two
byte addressing is used. If the static code length
exceeds 32K four byte addressing is needed. This can
be forced by "-1" option. If a large program 1is
compiled without this option and the code area
exceeds the limit an error message is sent then the
program has to be recompiled with "-1".

-opt:filename
The options of the CS-PROLOG interpreter or
converter that have meaning for the compiler version
(sound, error_on_undefined, tail recursion_opt,
printer, acknowledge, (see the interpreter manual))
can be set with this option. The "filename" has to



Multilogic Computing Ltd Page 88

be the name of a file produced by the interpreter
environment "OPTION SAVE" facility.

-ext:filename
This option directs the compiler that the names
listed 1in "filename" are to Dbe <considered as
external user-defined predicates.

The error messages of the compiler. The syntax errors are
printed out in the following format:

filename(line) : error err no : err_text

Here "filename" is the file name which is compiled, "line"
is the line number where the error occurred, "err no" is the
number of the error, "err_text" 1is the error text. The
semantic errors (e.qg. simultaneously static and dynamic
clause) have the same form, only the line number is omitted
and the erroneous identifier is printed out.

There are several fatal errors which terminate the
compilation: memory full, missing file etc. In case of a fatal
error a message 1s printed out and the compiler exits without
code generation.

9.2 The CS-PROLOG Runtime System

The CS-PROLOG compiler generates a code file that is loaded
dynamically by the runtime system. This program contains the
procedures needed by the generated code (e.g. the built-in
predicates). The name of this program is

CSPFRAME . EXE

The system loads the generated code from a file with a
fixed name:

CSP_PROG.LDF

You can change this setting an environment variable
"CSPPROG" to the name of the ".LDF" file generated by the
compiler (the extension need not to be given) with the DOS'
SET command:

SET CSPPROG=filename

The main goal of the program, i.e. the clause that is
called in the beginning of the execution, 1is the very first
clause 1in the source program. It has to be a clause without
arguments (with zero arity). If a program uses the simulation
extension predicates of CS-PROLOG, it 1s not necessary to use
the "run" predicate to initialize the execution (as in the
interpreter version) because the compiler runtime system
begins its execution creating a CS-PROLOG process whose goal
is the main goal of the source program.



Multilogic Computing Ltd Page 89

There are several options for the runtime system. They can
be given by setting another DOS environment variable "CSPOPT"
with the DOS' SET command. The option names have to be
enumerated separated by ";":

SET CSPOPT=optl;opt2;
The options are the following:
medtables

mintables
The memory for the main data stacks (HEAP, STACK,
TRAIL) is allocated at the Dbeginning of the
execution and cannot be extended (because of
efficiency considerations). So the system has to
decide what amount of memory to allocate for these
stacks and the rest 1is available for the dynamic
clauses, floats, symbols, etc., (these tables are
extendible). If the total size of available memory
is M bytes by default the system allocates 70% of M
for the main stacks. With "medtables" option set
this proportion is 50%, with "mintables" it is 30%.
So 1if a program constructs many prolog terms and the
execution 1is deeply recoursive the default memory
sharing is good. But 1if the program creates many
dynamic clauses, float numbers new global symbols,
it is better set this option to avoid a MEMORY FULL
error.

nogc
By default the runtime system performs garbage
collection if one of its tables runs out of free
space. With this option the garbage collection can
be disabled.

gcstat
If garbage <collection 1is performed with "gcstat"
option set a summary information is printed out to
the screen telling the number of collected and freed
items in the tables of the runtime system. It
damages the current state of the screen which is not
restored! (The output can be redirected to a file.)

ega
This option should be set if CS-PROLOG is run on a
PC with EGA card or compatible the window scrolling
is done 15 times faster. Setting this option on a
CGA card causes "snowing" on screen.



Multilogic Computing Ltd Page 90

10. Continuous Simulation In CS-PROLOG

The CS-PROLOG's continuous simulation extension can handle
such kind of mixed models that consists of the simulation of
discrete events and continuous flows. From the user's point of
view the extended CS-PROLOG system 1is transparent, i.e. all
possibilities of the Dbasic CS-PROLOG system 1is still
available. This chapter deals only with the added features.

Even the Dbasic CS-PROLOG system has been able to handle
discrete simulation models using discrete processes (see the
chapter "Parallel Execution”"). In the extended CS-PROLOG
system all discrete process handling predicates still work.
But beside discrete processes a single "continuous process"
may be created which simulates the continuous aspect of the
simulation model. The continuous part of the combined
simulation model can be described by differential equations.
The set of differential equation systems the user can use 1is
the set of ordinary first order differential equation systems.

"equation" declarative clause serves for describing a
differential equation system. A declarative clause
syntactically is normal PROLOG fact. Its name is fixed but its
arguments have to be written by the user. It is used to pass
input to the simulation system. E.g. the user may insert into
the CS-PROLOG program an "equation(...)." fact to describe a
differential equation system.

Once a differential equation system is described the user
can ask the system to create the continuous process using the
"cnew" built-in predicate. The continuous process later can be
deleted by the "delete cproc" built-in predicate. Note that
whereas only one continuous process can present at a time but
the simulation model may apply more than one continuous
process 1if they do not overlap each other in time. So the
simulation program may contain several "equation(...)."
definition. They <can be scheduled either Dby the wuser
(explicitly creating and deleting them) or by the system
(implicitly creating and recreating them on backtracking).

The execution of the continuous process means the step by
step solution of the established differential equation system
as the simulation system time increases. Note that the
systemtime notion of CS-PROLOG is assigned to the independent
variable of the differential equation system and the dependent
variables of the differential equation system can be regarded
as the state variables of the simulation model. In every time
moment the current value of the state variables can be asked
using the "state_variable" built-in predicate. If for some
reason backtrack occurs and the system time decreases then the
state wvariables will get Dback their previously computed
values. Depending on the behavior of the simulation model the
system time may move forward and backward but in every time
moment the state variables will contain the right wvalues.

Sometimes it 1is necessary to wait until a given condition
on state variables becomes true. E.g. to determine when a



Multilogic Computing Ltd Page 91

state wvariable will reach a constant boundary or when two
state wvariables will become equal. It can be done using the
"wait_ for condition" built-in predicate.

The differential equation definitions may contain
"parameters". They <can Dbe set either statically in the
"equation(...)." clause or dynamically using parameter
handling predicates "set param" and '"get param". If the

program changes the wvalue of a parameter during runtime the
effect of the change is done at the system time moment when
the "set param" action was 1issued. Parameters can be set
backtrackable way using the "set value b" built-in predicate
which means that on backtracking the parameter setting is
undone to the previous value.

The user has several opportunities to observe the behavior
of the state variables.

Using the "plot" declarative clause any combination of the
state wvariables can plotted against the system time in a
coordinating system on the screen. Phase portrait of two
arbitrary state variable can be plotted as well.

The history of a simulation run can be documented on the
printer using the "record" declarative clause and printing,
drawing and dumping built-in predicates.

10.1 Declarative Clauses

Declarative clauses appear in the user's program as PROLOG
facts. (A fact is a normal PROLOG clause which has no body).
They serve for storing information in their arguments and make
them available to the simulation system. Normally they will
never executed explicitly, only the system "reads" them. Their
names are fixed and the user has to take care of not mix them
with other clause names in the program.

There are three kind of declarative clauses:
- equation
- plot
- record

FEach kind of declarative clauses may form a partition (as
every normal PROLOG clause does). Since the first argument of
all of them should be a name of a differential equation system
(see later the description) all declarative clauses of the
same name belong to the same differential equation system.

If more than one "equation" declarative clauses are present
in the program with the same name (for example "equsys") then
multiple alternatives of the same differential equation system
are defined. If later the "equsys" differential equation



Multilogic Computing Ltd Page 92

system is assigned to the continuous process using the "cnew"
built-in predicate then its first alternative is applied. If
during the execution the simulation model fails and the
backtrack reaches the "cnew" predicate then in
nondeterministic way "cnew" chooses the second alternative of
the "equsys" differential equation system. Further backtracks
will reassign the third, fourth etc. alternatives. If there 1is
no more alternative to choose "cnew" will fail itself.

In case of "plot" and "record" declarative clauses multiple
alternatives with the same name are allowed but only the first
is used by the system.

10.1.1 Equation Definition

equation (Name,<eq_init>,<eq_def>).
equation (Name,<eq_init>,<eq_def>,stiff).

equation (Name,<eq_init>,<eq def>,stiff,
Error limit).

Defines an differential equation system with initial wvalue
conditions. "Name" must be a constant. It will be the name of
the differential equation system. "<eq_ init>" and "<eq_def>"
describe the initial wvalue condition and the differential
equation system respectively. The optional fourth argument
must be the constant "stiff" if it 1is present. It marks the
differential equation system to be solved with a special
solver algorithm rather than the general one. It is the user's
responsibility to decide what kind of solver is appropriate
for a differential equation system. It is advisable to use the
default solver which will be efficient in most cases. However,
if the execution of the continuous process aborts because of
the stiffness of differential equation system the user can try
to use the "stiff" solver algorithm. Nevertheless the "stiff"
algorithm will surely inefficient for the most non-stiff
differential equation systems. Even the stiff solver algorithm
can be further refined using the fifth "Error_ limit" argument.
If it is omitted the error limit of the stiff solver algorithm
is assumed 0.01 . If the error limit is decreased then the
solution will be more precise and the computation will be
slower.



Multilogic Computing Ltd Page 93

The syntax of the initial wvalue <condition and the
differential equation system definition is the following:

<eq_init> = var = expr |
var 1 = expr 1
{, var_i = expr_ i} ... )
<eq_def> = var' = expr |
var 1' := expr 11
{, var_i' := expr 1i} ... ) {: cond 1}
{: ( var_1' := expr kl
{, var_i' := expr ki} ... ) {: cond k}
}
Metavariables "wvar..." should be different PROLOG names.

They will be the symbolic names of the state variables. Note
that these symbolic names has no meaning outside the scope of
the differential equation system definition and the state

variable referencing declarative clauses or built-in
predicates. E.g. "yl" may refer to state wvariable 1in the
"equation(...)." declarative clause but in the normal PROLOG
environment will appear as an ordinary literal "yl". The user

should avoid to confuse the notion of the state wvariable with
the normal PROLOG variable.

The number of equations in the differential equation
systems 1s maximized in 10. The order of state variables on
the left side of the initial wvalue conditions and the
differential equations have to be the same.

Metavariables "expr..." should be usual arithmetical
expressions built from numbers and symbolic names of the state
variables, subexpressions, parameters and special names (see
below) connected with the usual arithmetic operators. (See the
description of the "is" built-in predicate).

Beside the state variable names the wuser can wuse in

"expr..." symbolic expression names and symbolic parameter
names.
Symbolic expression names serves for reducing the

complexity of the right side of an equation. The actual
subexpression can be assigned to a symbolic expression name
using the "set_ expression" built-in predicate.

Symbolic parameter names stand for a numerical value in the
definition. Their value can be set using the "set param"

built-in predicate during runtime. All parameters of a
differential equation system must have been already set when
the differential equation system is used Dby a "cnew"

predicate. The number of parameters in a differential equation
system is maximized in 20.

The 1independent wvariable of the differential equation
system (the 'time' variable) can be referenced using the fixed
name "t" . There are two more predefined constants for "pi"
and "e"



Multilogic Computing Ltd Page 94

Metavariables "cond..." should be logical expression
built-from arithmetical expressions defined above connected
with the usual relation operators (see the chapter "Comparison
predicates" ) and the usual logical operators ("not", "and",
"or", "xor"). If conditions are used then instead of one
differential equation system a set of differential equation
systems is defined. Each element of the set must have the same
number of equations and equations must refer to the same state
variables in the same order. The number of alternatives 1is
maximized in 8. The total number of equations in a set of
differential equation systems cannot be greater than 32.

The use of the conditions enables the user to describe such
differential equation systems the right side of which may vary
depending on the given conditions. During the evaluation the
solver continuously checks the condition system. If there is
at least one condition which is true then the solver algorithm
chooses the differential equation system associated with the

first true condition. Otherwise a runtime error will Dbe
generated.
Examples:
equation(sinus_cosinus, ( yl = o,
y2 = 1),
(yl' := y2,
y2' = -yl ) ).
equation (spring, (yl = o,
y2 = 1),
(yl' := y2,
y2' = -yl + d*y2 ) : t <= 8;
(yl' := y2,
y2' = -yl + d/2 * y2 ) ).
equation(stiff eq, ( x1 = 1,
x2 = 0,
x3 = 0),
( x1' := -0.1 * x1,
x2' := 0.1 * x1 - 1.e8 * x2,
x3' := 1.e8 * x2 ), stiff).

10.1.2 Plotting On The Screen

It can be helpful if the user can follow the graph of the
solution function during the differential equation system
evaluation. For this purpose the continuous extension of
CS-PROLOG environment provides a tracing tool. The tracing
tool, 1f it 1is activated, draws the graphs of the required
solution functions on the screen step by step as the function
values are computed by the solver algorithm. The wuser can



Multilogic Computing Ltd Page 95

determine which functions have to be plotted and which area of
the coordinating system has to appear on the screen. Different
functions are plotted with different colors. There are two way
to plot curves. In the first case user can determine the edges
of a rectangular by their coordinates. The system
automatically normalizes the rectangular to be fit properly on
the full screen. In the second case the user can determine a
horizontal zone. In that case the screen acts 1like an
oscilloscope screen. The graphs of the solution functions are
drawn from left to right. If they reach the right border of
the screen it is cleaned up and the drawing continues from the
left border and so on. If the differential equation system is
changed on backtrack then the affected graphs are redrawn on
the same screen. So backtrack may cause to plot a set of
graphs of the same solution function. The user can activate
the tracing tool by including the a "plot" declarative clause
into the program.

plot (Name,Statvar list,V_intval,H intval).
plot (Name,Statpair list,V_intval,H intval, phase).

Its first argument is the identifier of the declaration.
This identifier should Dbe the same name as one of the
"equation" declarations. The second "Statvar_list" argument is
a PROLOG list. Its elements should be symbolic names of either
state wvariables of the differential equation system referred
by "Name" or parameters. The state variables and/or parameters
listed here are drawn on the screen. The number of curves on
the screen 1is maximized in 6. The third "V_intval" argument
must be a 1list containing two numbers. They determine the
vertical interval of the plot. Depending on whether the user
wants to apply the rectangular or horizontal zone plotting
method the fourth "H _intval" argument can be either a list of
two numbers (as 1in the vertical case) or a number. In the
latter case this number determines during the oscilloscope-
like plotting what size of slice of the logical horizontal
axis have to fit on the screen.

If the user wants to plot phase portraits he should use the
second form of "plot". The "Name" is the same as above. The
second argument must be a list of two element's sublists. The
elements of the sublists can be symbolic names of either state
variables of the differential equation system referred by
"Name" or parameters. The number of phase portraits on the
screen 1s maximized in 6. The meaning of the third and fourth
argument 1s the same as above in the rectangular plotting
case. The fifth argument must be the constant name "phase".

10.1.3 Documentation On The Printer

After the simulation run the user may want to print out or
draw out the graphs or to dump the wvalues of the solution
functions. ("Printing" is done in character mode, "drawing" in
bitmap mode.)



Multilogic Computing Ltd Page 96

To obtain an output document on the printer the user should
do the following actions:

- announce the request of recording the computed
function wvalues using the '"record" declarative
clause.

- print out the documentation of the recorded values
using built-in predicates.

Note that the user can only print out the documentation of
a continuous process when it has finished its task.

The recording request is announced by the presence of the
"record" declarative clause in the program.

record (Name,Statvar_list,Step_size).

Its first argument is the identifier of the declaration.
This identifier should Dbe the same name as one of the
"equation" declarations. The second "Statvar_list" argument is
a PROLOG list. Its elements should be symbolic names of either
state wvariables of the differential equation system referred
by "Name" or parameters. The state variables and/or parameters
listed here are recorded by the system during execution. The
third argument determines the step size of the recording. The
impact of that declaration is that the solver algorithm puts a
record containing the values of listed state variables and/or
parameters into a file. It puts a record to the file in every
step from the start time until the end time of the continuous
process. Backtracks may cause that there is more than one
record referring to the same systemtime moment. But the
printout generating built-in predicates discussed below make a
preprocessing first 1in order to discard the superfluous
records and obtain the right set of function wvalues. In every
multiply recorded case the last record 1s retained. So the
remained set of records will be identical with the solution
functions accepted by the simulation run.

10.2 Continuous Simulation Built-in Predicates

10.2.1 Continuous Process Handling

In CS-PROLOG a discrete process 1is characterized by its
goalsequence, 1ts name and the time interval within which it
must terminate its task. We can imagine the continuous process
in a quite similar way. The only difference 1is that the
goalsequence 1is replaced Dby the name of a differential
equation system. While the discrete process performs its task
by executing its own goalsequence then the continuous does it
by solving the equation system assigned to it. A further
restriction is that only one continuous process can exist at a



Multilogic Computing Ltd Page 97

given systemtime moment. It does not mean that only one
differential equation system can be present in the program
(alternative "equation(...)." declarations) or only one
continuous process can be created during the simulation run
but the user should plan their lifetime 1in a such way that
only one of them can be active at a given systemtime moment,
i.e. the user cannot <create another continuous ©process
("cnew") until the actual continuous process 1is not deleted
("delete_ cproc") .

cnew (Name, Process_name,Start_time,End time)
cnew (Name , Process_name,Start_time)
cnew (Name, Process_name)

The continuous process 1is created by the "cnew" predicate.
The first argument 1is the name of the differential equation
system. "cnew" must satisfy the following conditions: An
"equation(Name,...)." declaration with "Name" as its first
argument must be present in the PROLOG's database and it must
be syntactically correct. "cnew" cannot define such a
continuous process the lifetime of which (the time interval
between "Start time" and "End_time") overlaps the lifetime of
a previously created continuous process. The start time must
not be earlier then the current systemtime. Otherwise an error
message 1s generated. If everything is correct the scheduler
initiates the continuous process. It Dbecomes 'created-but-

inactive' and waits until  the systemtime reaches its
"Start time".

"cnew" makes possible to define different equations on
backtracking. The "equation(...)." declaration partition may
contain several clauses (facts). Some of them may have the

same name in their first argument. These clauses form a 'sub-
partition' in the "equation" partition. These subpartitions
play an important role on process creation during
backtracking. They serve for alternative equation assignment.
Let's have the following example:

equation (abc, eq_abc).
equation(xyz, eq xyz 1).
equation (xyz, eq xyz 2).

., cnew(xyz, xyz proc, 0, 10),

When '"cnew" 1s performed first time it initiates the
"xyz_proc" with the "eq xyz 1" differential equation system
and succeeds. If casually the backtrack reaches "cnew" the
scheduler tries to find another "equation" declaration with
the same name and reinitiates the "xyz proc" with the
"eq _xyz 2" equation system and succeeds again. A further
backtrack would not find any new alternative and would
continue the Dbacktrack before "cnew". In other words "cnew"
tries all possible alternative differential equation system
declarations with the same name in a non-deterministic way.



Multilogic Computing Ltd Page 98

delete cproc (Process_name)

"Process_name" must be the name of the currently active
continuous process. "delete_cproc" removes the active
continuous process from the simulation system.

10.2.2 Differential Equation System Evaluation

Since the independent variable of the differential equation
system is assigned to the systemtime of the CS-PROLOG their
evaluation 1is done automatically by the system. Whenever the
user asks the wvalue of a state variable then the appropriate
value of the solution function will be returned. When the
systemtime is increased the differential equation system is
solved automatically. When a backtrack causes the systemtime
to be decreased the solution function is rolled back and the
state variables will contain their previous wvalues. If the
scheduler finds a choice point anywhere in the program and it
can go forward again the solving of the differential equation
system continues from that system time moment.

After 1its creation the continuous ©process gets into
'created-but-inactive' state i.e. it waits until the
systemtime reaches 1its start time. Obviously 1t solves the
differential equation system only during its lifetime. If the
systemtime reaches the end time of the continuous process then
it is deleted from the system and the execution of discrete
processes continues. Any later reference to its state
variables is erroneous. Of course a later backtrack may cause
the continuous process to reappear again. Conversely in that
case when the Dbacktrack continues beyond its start time it
becomes 'created-but-inactive' again. If the backtrack reaches
even the creation point the "cnew" will work as we discussed
above.

10.2.3 Asking For State Variables

state_variable(Stat_var, X)

The user can ask the value of a state variable using the
"state_variable" built-in predicate. At the systemtime moment
when the "state_variable" is executed the continuous process
must be active. The "Stat var" must be the symbolic name of a
state wvariable of the currently active differential equation
system. '"state_variable" always succeeds and unifies the
current value of the given state wvariable with X at the
current systemtime moment.



Multilogic Computing Ltd Page 99

10.2.4 Waiting For Conditions

wait for condition (Cond)

Sometimes the user wants to determine a systemtime moment
when the state variables satisfy a given condition first time.
For example when the wvalue of a state variable reaches a
constant numeric value or when two graphs of state variables
cross each other or any other logical expression becomes true
first time. This can be done using the "wait_for condition"
built-in predicate. The "Cond" may be a complex logical
condition using state variables, parameters, numerical
constants and usual logical and relation operators. When a
discrete process calls this predicate it will be suspended
until the given logical condition becomes true. In other words
it means an implicit "hold" suspension of the caller discrete
process for an unknown time interval. ©Note that 1if the
systemtime reaches the end time of the continuous process and
there is a discrete process suspended by a
"wait_ for condition" call it means a deadlock situation and
the scheduler forces to backtrack the simulation run in order
to find out another alternatives. No more than 20
"wait_for condition" request may be active at a time.

10.2.5 Parameter Handling

Sometimes the user wants to slightly modify the
differential equation system during the simulation run. For
example he wants to change the wvalue of a constant in the
equation definition. For that purpose continuous extension of
the CS-PROLOG introduces the notion of 'parameters'. The
notion of parameters is very similar to the notion of 'values'
in the basic CS-PROLOG. The difference is that the parameters
can only store numerical values and symbolic parameter names
can appear on the right side of a differential equation
definitions while ‘'wvalues' <cannot. Parameters are global
numerical variables which can be set and get by parameter
handling predicates anywhere and any time. Since they are
global variables one parameter can be used in several equation
definitions. Note that parameters can be set not only during
the lifetime of the continuous process but every time during
the simulation run.

Parameters can be set using one of the following built-in
predicates.

set_param(Par name, Numerical constant)
set_param b(Par_name, Numerical constant)
The only difference Dbetween them is that the first
predicate is non-backtrackable, the second one is

backtrackable. They set the "Par name" parameter to the
"Numerical constant" value. If the "Par name" parameter 1is



Multilogic Computing Ltd Page 100

referred by an equation and this equation is currently being
solved the calling of the "set param" or "set param b" has an
immediate effect on the differential equation solution. From
that systemtime moment when the set was encountered the solver
algorithm continues the evaluation with the newly set
parameter value until a further setting does not take place.

get_param(Par name, X)

The "get param" predicate serves for getting the current
value of a parameter.

set_expression (Expr name, Expr) .

"Expr name" must be a PROLOG name. "Expr" must be an
arithmetical expression similar to the right side of the
differential equation definitions (see "equation(...)."
declarative clause). "set_expression" associates the "Expr"

arithmetical expression with the name "Expr_ name".

10.2.6 Printer Handling

Obviously the user wants to print out the result when the
continuous process has been finished. It can be achieved by
one of the following built-in predicates.

print_graph (Name,Pair list,Printer_ type, From, To)
print_graph (Name,Pair list,Printer_type)

Its first argument should be the same name as one of the
"equation" declarations. Furthermore it 1is desirable that a
"record" declaration should have been inserted to the program
with the same name otherwise "print graph" will not find the
file of the recorded values and it generates an error message.
The second argument is PROLOG list of two element's sublists.
The first element of every sublist 1is state variable which
should have already appeared in the second argument of the
appropriate "record" declaration. If it did not appear it
cannot draw and it is ignored. The number of state wvariables
and/or parameters to print 1is maximized in 6. The second
element of every sublist must be an PROLOG atom. Usually it is
a single character. It serves for determining that character
by which the graph of that state variable will be printed out.
If the length of the given atom is greater then one its first
character 1is wused. The third argument must be either the
constant name "epson" or anything else. If "epson" 1is used
then "print graph" uses EPSON printer specific control codes
and produces more pretty output than in the general case. The
forth and fifth argument (if exist) determine two systemtime
moment within which the solution functions will be printed
out. If they are omitted the whole lifetime of the continuous
process is assumed.



Multilogic Computing Ltd Page 101

draw_graph (Name, Statvar_ list, From, To)
draw_graph (Name, Statvar list)

This predicate can be used only if the user's configuration
has an EPSON FX-... printer or compatible. Its first, third
and fourth argument have the same meaning as in the case of
"print_graph". The second argument is quite similarly contains
a PROLOG 1list of state wvariable names. These state variables
should satisfy the same conditions. This predicate works in
the same way as the previous one but it draws the solution
functions more precisely and smoothly using the bitmap mode of
the printer.

The user has the opportunity to print out the result of the
differential equation evaluation in a table form.

print_record(Name, Statvar_list, From, To)
print_record(Name, Statvar_ list)

Its arguments have the same meaning as above. It does the
same task as "print graph" but it prints out the value of
solution functions in a table format. Since its page breaking
method is identical with the "print graph" one's it is a good
idea to print out both kind of output and examine them side-
by-side.



Multilogic Computing Ltd Page 102

11. Index

A

ADOIT . e e et h e ea e s et sae ettt ae ettt sea bt ea et saeeaneen e 40
ADS e e ettt h e et she et et eh et eae et e et she it es she et eae e et ea e e eenaen s 22
ACOS .. eu ettt eut ettt eae e st et et et eu e ehe e ea e s et ekt eae et e e ettt e st eae eae e ettt ae et e ea e e e s et eab e sbeeaneea e aees 22
ACEIVE PIOCESS 1. euvvenvteeuite ettt eetite ettt eesite ettt e eue e e sbe e esbteeat sheeea et ettt esbte et be e eheeen e b beeeatben bt e eubeeeatbeeesbee tenabeeesbeeenes 46
A CLAUSE ..o ettt h et eh e et eh e b e bt e ettt eh bt e eat e e te et e enteeebbeeeae 16
A OPETALOT ... ettt ettt ettt ettt ettt e e sh et ea e ettt ea e et e e ebe e ae e bt eht e ettt ehb e e et b e e nat e bennaeeebbeeene 32
ALIVE Lo e e e et et sae ettt ae ettt ea e et sbe e ea e 33
ATICESTOT ...ttt ettt et e et ettt ae et ea et eh e sae et eh e e ae st e et e eae et ea e saeean e ea e b eat et et eaeeneen e 19
ANCESLOTADIE CALL..c...eiiiiiiiiiiie e et eb e ettt et e ettt e bt et e bt et eaea e e eea 19
APPEIA_TILE ..ot e et et ea e et h et et ettt et eeae e 14
ASIIL .. ettt ettt e e e et et ea et ettt e e b et ea e eae eae ek e ae eae e ea e e e s e a eab e sbeeaneea e aees 22
ASSEIT CLAUSE ... eutteeee ettt ettt ettt ettt ettt ettt e e e bt et ettt ea e ettt eebe e ae e b bt eht b ettt ehb e et e e eht et e s ae e et beeeae 16
ASSIZN. ELODAL K@Y ...ttt e et bt ettt e eb et et et e nreeeas 27
ASSIENL K@Y 1ttt ettt ettt h et bt e at e eh bbbt e bt ettt eh e eatbe e teeattenbeeetbeeeae 27
I T s £ OO TS U P PP PORUPORIPPPRPPRRIOt 27
ALATL ...ttt et et et ea e e ettt e e ekt a e sae ettt ae eae e ea e et a e et sheeaneea e 22
B

DACKETOUINA ...t ettt ettt ettt ettt she et e e et e e ebe e es bt ettt e sae e e be et eeaiteeabe s saeeenn 35
DACKWATT. ... et e a et st et e s e e 34
C

CRANEE COLOT ... uttiit ettt ettt ettt ea e et e e ebe et e eb bt e ebt e ettt ebbeeeatbessat e b ennaeeebbeeene 28
CRAT OF ettt et et ettt e ettt eb bt eat e e ehe e eabe e bt tenbe e e bt e eaiteentbeeeaee 24
CLAUSE  COUML ... ittt ettt ettt ettt ettt e h e ea e ettt eh e eat e e ebe e ae e bt e ebt e e bt e ebbeeeatbeesat e bennaeeebbeeenes 16
CLEAT BT SCIEEIN ...ttt ettt et ettt et e bt eate ettt et et e e e et e eate et bt e eht e e bbbt eat b e s bt e eabte et beeenbeeen s eueeesseeene 38
CLEAT SCT@ET ... vttt ettt ettt ettt ettt ettt ettt e e bt e eht ettt ea e eat e ebe ot et beeebe e e bt e ebbeeeatbe et sasaenbeeebbeeenes 29
CLOSE 8. .t et h ettt et ea e ettt e he et e eh e eh bbb e bt eteeabbeeeaee 14
CLOSE LEVEL ...ttt e h ettt e eh e et e ea e bt bt e ettt eh e eat e e te et e e beeebbeeeae 30
ClOSE WITLAOW ... .ttt et ettt e bttt ettt ea e et e e ebeee e e ebb e eat b ettt eubeeeabeeebbe s benabeeesbeeenes 28
CILEW ...t ei ittt ettt et et et ea et e et ea e e ekt ae ettt et e e ek e e ea e she et ettt e ae eas e ea e seateeea et saeeaneen e 97
COAC OF ...ttt ettt ea et eae et e bt ea e bt e ek bbbt et te e bt e ea b e ebbe e e et e e ehe e eaiteentbeeeaee 24
COLOT TTIOMAE ...ttt et et ettt ettt b et eh e et e eh e eat et b et e ebt e ettt ebb e e eatbe e s eaebenbeeebbeeeae 38
COTIIP -ttt et ettt eaite ettt e e et eebe e eaete et bt eeat s e be e e eat b e e ebe e eubte et e eebs e eat s et ea b4t bt eatt e bt e eabte et sheeen st be sttt eabee et beeeaee 17
COMICAL ..ottt ettt ettt et et ettt ae et et e e sebt e e b eat e et e et eb e e e eat e eue et e et st eaeeas e et e e eh e et she et e 23
COPY_ SCTEETL. ... utteuteeeuieeenttee sttt teaaueeetbeeeattes sue e e bt ettt s aeabeees bt ettt eh bt eat b e st easbeeebe e ettt abbeeeatbenn s eastennneenbbeeeaes 29



Multilogic Computing Ltd Page 103

CPUL EIITIC ..t ettt ettt et ettt e bt et she e eate et ehtteasbe e ehe e easte e bt e ebe e et ebbee e atte e ehe e eaabe e b beeeh bbbt e eheeeaabe et beeeaee 38
CTEALE CHOICE ...uvtiieiiiiie ettt ettt ettt ee e e bt eat ettt ea e ettt eebeee e e eb bt e eatten bt e eubeeeasbeeebbe s benaneeesbeeenes 82
CIEALE I1E ..ttt et ettt e h et e eh e eat s e eate et e bt et e eh e eh e e e eaeeete e et beeeaee 14
CTEALE. WITLAOW ...ttt ettt et ettt ettt et e e bt ea e ettt eat e ea s shb e eat b e s bt e eabte e beeebbee e e e sbeeesbeeenes 27
CSP_ AL -t h et e eh e bttt ea e ettt bt e e be e ehbe e eh b b be e ehe e ete e et beeeaee 82
CSP_LL0C -ttt et et h e bttt ea e et be e ehe e et e eh bt e eh bbbt e eae e eateentbeeeaee 82
CSP_T@L ettt et h e et ea et ek ea e ettt e s e bt eh bt eat b e e bt e eaabe e bbe ten bt e e eaeeeaiteentbeeeaee 82
D

QALBLIINIE ... ettt et st et sae et sae et et e e s e 39
AECOMIP ..ttt ettt ettt eae et e e bt e ea b et beeeh bt e ebb e eatte e ebe e eaabe e bbe e e et be e eaeeeaiteentbeeeaee 18
EIELE CLATISE. ... vttt ettt ettt ettt et e ea e ettt eebe et e ebb e e ebt e ettt ebbeeeatbeenet e b ennbeeebbeeene 16
QRIEEE _CPITOC. ... ..iieeiiiit ettt ettt ettt ea e ettt ea e et e e ehe et e eb bt e ehe e ettt ebbeeeat b e e sat b bensbeeebbeeeae 98
EIELE PATLILION ...eeeeieiiit ettt et et ettt et ettt et e e bt ea e ettt eht e et bt eat b e sttt eabee et et eabeeen s eaeeenieeene 16
EIELE PIOCESS ..uvveevetiite ettt ettt ettt ettt et e bt ettt et she e ea et e e bt e ea e et be e ebeeen e eb bt eatten bt e eubeeeatbeeebbee enabeeesbeeenes 45
EIELE. WITLAOW ...ttt ettt ettt ettt bt ea e et e e eht e shbe e eat b e s bt e eabee e beeeabee e e e sueeesbeeenes 27
AESTIOY  CHOICE. ...ttt ettt ettt et bbbt e ea e et e eat e es e b bt eat b e sttt eubee et beeebbee enabeeesbeeenes 83
QESPIAY ...ttt e h e ettt e bt eh e et te e ebe e ea b e bbe tebe e e bt e eaiteenbbeeeaee 13
AraW_GrAPR ... ettt ettt et eea bt eaite s 101
ATAW EBXE .ttt ettt ettt ettt e s eat e bt e eb et ea bt e eb e e eht e et eab e et be e ehe e e bt e ehbe e ehe e et e ebeeenateentbeeeae 35
E

CEALT . e e eh e et he e ea ettt eht e bt e eabteea bt eeeat b e n ittt eabeeetbeneaee 40
<o OO O OO P PP OTUPOPUPPPON 19
EUUATION .....eeiiiiit it ettt ettt et eeat b ettt e e bt e ea bt e eb bt e ehe e bt e ebb b et b e ehe e e be e ehbe e eh b b be e eaeeenabeeatbeeeaee 92
104 J OO OO OO OSSO PRSP OTUPPPOPPITON 22
F

BT et e e eae ehe ettt e ee et ee e ea et ettt e 19
BELLL e e ettt e et e e et eae eheeat ettt ee et e e sae eh et es et ee 35
FINA. CIAUSE. .t e ettt ettt bbbttt et e eb e et e bt e ea e e shbee et e st e 16
BLOOT 1.ttt e e ettt et et e et ea e s eae e eae et et s ennens 22
BT e e ettt e et e ae et ehe bt eat et st ee et e s eae bttt n et 34
FOTWATE ... et ettt et s ettt sttt e b e 34
G

GATDAZE COLIECHION ...veuiteiiiiieit ettt et ettt e eh e ettt e sbe e eas b e eebeteabe e eb e eaabeenabeesennbeeens 41
Ottt ettt et e et h e eh e bt e eheten £ ek bt eat e e bt e eua e et b e eh bt e ehe e eh e e b bt eatae bt e ebbe b he e eheeenbe e e bt eabteetbeeeaan 15
GO ALOML CRLL. ..ttt ettt ettt ea e ettt eh e e e eh e eat e ettt ea e et e bt bennaeeebbee et 79
GO COLL EYPC ettt ettt et ettt ettt h ettt e eh e eht e ettt eab e et e e et e be s b e ebbeeeae 78
GO CLAUSE ...ttt et et ettt bt et e eh e ehtten £ eh bbbt ehe e et e eh e e eh bt e e eateeabe e et beeeaee 16
GO HI1@ COIL .. ettt et a et e eh e bttt e eh e et e et et et et beeeae 79
GO H10AE CRIL ..ttt ettt ettt e eh e et a bt e ea e et e eb et be s b e ebbee et 79
O ITIPUL. ettt ettt ettt s h e ea e et eat et e e ehe e ea bt e eh e e ehe e et eh bt et e e ehe e et e eh e e eh b b be e eheeenabe et beeeaee 14
GO AN COLL .ttt ettt eh e ettt bbbt ettt eh e et e e e et e s beeebbeeeae 79
GO LIS NEAM. ..ottt eh e ettt e ea e ettt e b et bee et 79
GO LISE BAIL .ttt e e ettt bbbt ettt eh e et be e s et enteeebbeeeae 79
BOE TIER AT @i et et ettt bbbt ettt eh e et e e e et e s beeetbeeeae 78
GO OPCTALOT ... vttt ettt et etit e e ettt ettt ettt she et e ettt e s ebeeeeht e ettt eh bt eat b e ebe ot et be e ebt e ettt ahb e eatbe et satbenbe e et beeeae 32
GO OULPUL ..ottt ettt ettt bt ea e et sat e et e e ebe e ea bt e eb e eat e en £ ehbbe et b e e ehe e et e ehbeeeh bt e e eheeeteentbeeeaee 14
T PATATIL. ....cuiiiiitiiiiit ettt ettt ettt ettt ehe e bt e et bbbt e e bt e ebbt e e bt e eabeeeatte e ea bt e bt ehe e e e bt eabeeetbe e eeeatbenaeeeabee s 100
GO SCTEEIL 1. v ettt ettt et te ettt ettt et e sshe e ea bt et sat e et e ehe e ea bt e eb bt eatten £ ebsbe et be e ehe e enbe e ehbeeehbbe e e eaeeenateeatbeeeae 29
GO STIUCE AT 1outtiiitieiiie ettt ettte ettt et ettt et e bt e ehbteeat sheeea et e ettt eabeeeatte e ebt e en e b bt ehtbea bt e eabee et be e ebbe e s bt eesbeeene 79
EE STIUCE TUNCLOT ...ttt ettt eb e ettt sae e es ettt e eat e be e eb bt e et enabes e nbeeens 79
GO VAL .ttt ettt et h et e eh e bttt eh bt et b e bt e et e eh bt e eh bbbt e ehe e ete et beeeaee 17
BEE WITLAOW....e ittt et ettt ettt ettt e bt eb e ettt eh e eat e et b e b e e eht e ettt ehb e eatbe e e eaetenbeeebbeeeae 27
LD ... e e et eh et ea e e bt eh bt et She e ea e et bt ehtte bt ehbeeea s bt e ehtben bt enbeeetbe e i 15

BEAPIIIC. 1.ttt ettt et et et eae e et ae e et ae eae e et et eaeen e 35



Multilogic Computing Ltd Page 104

H

AT COPY w ettt ettt ettt et ettt e bttt e eh e eht s £ eh bt ettt bt et e bt e ehb b e e eateebeentbeeeaee 38
NEAA. POSTEION ... vttt ettt ettt e ettt ettt ea e ettt e ebe e e e e ebb e eat b ettt eubee e be e bt s bennbeeebbeeene 37
FOLA <ot ettt et ettt ettt e e s eaee 45
000 ) G 01 1S) 1 OO OO OO OO PO U U PSP POUUPOROPPPPPRIOt 28
ROTIZONE SCALE ...ttt e et s et e ettt s et st ean e e 36
1

TIICT VALUE .t ettt ettt e eh e et bt ea b et she e e bt e eb bt eat e e ehe e eabt b en e ebbee et te et e e 17
TICT VAIUE B et et e ettt bt et e ebb e e s e ebe e eb bt eabt e she e et ebbe e teebbeeeaeeeaanes 17
TIE INAICATOT 1.ttt ettt ettt ettt a et e ea e ettt she et e eb bt ea s ebe e ea st eatbe s she e et b e s saeee e enbbeeeaeeenanes 38
L ettt ettt ettt ettt e ae s ekttt s ettt e e e e e e h e e a e ea ehe ehteat ettt e et et sttt ettt en et enaen eae 21
IS AEOMMN ...ttt ettt et ettt ettt ea et eh e et h e eat e bbbttt bt ea e e bt eht e e bt e ehb bt e ebbe e she e et e eabees 20
R 1 (<O OO OO OO OSSP TP P UO RSO PPT 20
IS TLOAL .ot et eh e bt ea e e eb bt eht e e b e s st be e sbbe e she e et e e 20
IS BIOUIA ...ttt ettt et ettt et e be e eat e e bt e eh bt ea e ehe e ettt eb bt eat b e bt e ea bt e et e ehbeeeat e e st e eaaees 20
IS TMIE. ettt ettt ettt e ettt et e eh e bt e bt ehe e te et eat e e bt e ekt ettt e ehe e en b e eat b ebbe e she e et e eabees 20
IS LIS 1ottt ettt eh e et b e eh et e e eat e bt eh e ettt e ehe e e be e teeaabeenbbe e she e e teeenbees 20
IS TMUINL ..ttt ettt e et et ettt ettt ehe et et a e s ea e eh e e ae et e b eae e b et fen et e en e aeeaeeearens 19
IS VAIUC ..ottt e ettt eh e et bt et eh ettt bt st ettt ehta e bt e ehb b bt e ebbe e sat et e eabees 20
IS VAT .. it ettt ettt et e et ehe bt ea et a e sae ettt e e eae e b s st et sae et es e aesaeeeaaeas 20
IS WITMAOW ...ttt ettt et et bt ettt ae et she et e st e b ettt et b eae e eate s 20
K

KEY CCEPL ..ottt et et ettt ettt et et e bt eh e ettt eehe ettt eaa e ebae s sheeenn 39
KEY PIESSEA....eeniie ettt e ettt et ettt ehe et e et ehe e ea e ettt ehe et e e e e enabe s sheeenn 39
L

R 1S g 00 F: o B OO O OO TSSOSO UURUPRPPRPRI 37
LISE LEIEER ¢ et e e et et eb e et h et ea et en bt et e st e 21
JOAA_FTNE ... ettt ettt ebe et ea e ettt e h et et e eb e bbb e bt e eteeatbeeeae 18
JOAA_PICTUIE .......eiiiiiiiiit i ettt ettt ea e et e e bttt e eb bt e ehtte sttt ebbeeeatbesset b bensbeeebbeeenes 38
JOAA SYSEEIM ...ttt et et ettt ettt ea e ettt bt et et e bt e eh bt et e bt eabe et e et be e et eaanes 30
10CAL A CLAUSE ...t ettt et b e et ettt e e et e eabe e st e s bt e e eae e e be e eeentbennaee 18
10CAL ASSEIT CLATISE. ...uvtiteie ettt et ettt ettt b et e sb e eat e et eab e et te s ebe e easbaesnbeeenbbbeeeaee 18
10CAL ClAUSE COUNT ...uiiiiiiii ittt ettt ettt b et e sb e ettt e eab e et tesebe e eabaesnbeeentbbeeeaee 18
10CAL EIELE CIAUSE. ..uvtiitiie ittt ettt ettt b et bt eat e et eab e et be s ebe e easbaesnbeeenbtbeeeaee 18
10CAl dEIELE PATLILION ...eeuiieiiiis ittt ettt ettt ebe et e eb e et e s et b e ebbeeebeeeeatae s sbeeeniee e e eaee 18
10CAL FINA CLAUSE ...ttt e et ettt b e et et eeh bt e eabe e st e s bt e eana e beee e etbeneaee 18
1OCAL GEE CLAUSE ...ttt ettt ettt ee e et b e e eate et cea bt e eabe e sateen b e e eas e et eeentbenaee 18
L1OCAL GEE VALUE ..ttt ettt ettt e a e et et et et bt ettt ettt bt e e 18
10CAL INCT VAIUC ...ttt et ettt et b e eat e et et eeabe e sae e e st e e sae e e te eeentbenaee 18
10CAL INCT VAU Dttt e et ettt et e eh e ettt e eab e et e s bt e eab e e ebe e et bbe e i 18
LOCAL SEE VAIUE. ...ttt e et ettt ettt eab e ettt ea e et bt et sae e eae b e e e 18
10CAL SEE VAIUE Dot ettt et e b e e e et et b et ea b e be e e e etbeenaee 18
10CAL SUPPIESS CLAUSE. ...c. vttt ittt ettt ettt eb e et e eb e et e e st b e tbe s ebeeeeatte s sbeeenite e e eane 18
10CAl SUPPIESS PATTIEION ...t ettt et ettt ettt ettt eat e sh e eat e bt e et ee et e e ebeeen e ebbeeeusbeebteesueeennbeennbees 18
L0 e e eh et h e h e bt eh e e bt eh e e bt e ehe e en e ehbe e eh bt ebbe e ehe e et eeabee s 22
LOOK ...ttt et et et et h e eae e e ettt et et sae e eens 34
M

MAKE ALOML COLL ..ottt e e ettt e b e ettt e et e e bt et e e bt et et st e et eea 80
MAKE T10AE COIL....eeiiiiiit ittt e ettt et et ettt et e e bt e ea e ettt e eabeeea bt e esiteene 80
MNAKE GTOUNM ...ttt ettt eet e e s bt eat ettt ea e ettt e ebeee e e ebbeeeatten bt e eubeeeanbeeebbe s bensaeeebbeeene 40
MAKE TN COLL ..ttt et ettt ettt e bt e e e bt e eat b e sttt eab e et e ebbe s aeneaeeebbee et 80
INAKE LISt COIL.. ittt et ettt et e e bt es e bt eeat e e sttt eabee et b e e ebbee e s abeeebbeeene 80

MAKE SITUCE CELL...uiiiiiiiiiiiiii e ettt st sttt 80



Multilogic Computing Ltd Page 105

MAKE TFATL TIOLE ..ottt e ettt ettt st e e e et e s bt e ebb e et e b e et e eeas 80, 81
TNESSAZE ATTEVE .....oooiiiiitiiiiiiiiie ettt ettt ettt ettt ea e et e e bt eabe e bt e eh bt e ebbe e eateenabeeeasbaenbeeeeetbennaee 46
IO .o et et et ehe e eae b es et a et ettt e a e eae b s eae e e sae eae e et e nesaeeenaens 22
N

TLEW .. ettt ettt et e st et et ettt eae et etk et ehe ek e et et ea e eae eae e ekt ae eae et e e s e ea eab e sheeaneen e 45
T e et e bt eh e e she sae eae bt eat ettt ea et et e e e sa eh ettt et e 12
o

OPEIL FILC ettt e h et et ehe et eh e et bt et e eh e e eh bbb e sae e eibeeatbeeeaes 13
OPEIL LBVEL.. .ttt et ettt e h et e eh e eat s £ eh e bt e bt et e eh e eh e e e eaetete e et beeeaee 30
OPEIL WITLAOW ...ttt ettt et ettt ettt e ea e e s bt eat ettt ea e et e e ebeee e e b beeeat b ettt eubeeeanbeeebbesbennbeeesbeeenes 28
P

PALETEE ..ttt et et eh e et b e ae e bt et e bt ea bt ekt eat et bt e bt et beeeanae s nreeeas 35
PAUSE. .ttt ettt ettt et ettt et h et ea e ettt e eb bt eata e b b e e eat e Sh bt eat b e bt e eaabe ek e eatten s ehbee e be et beeeanaennreeeas 39
01+ OO OO O OO O TS O OO O PP PRRUPPPPO 36
PN COLOT ..t e e ettt eat e ettt e h e ettt e ehe e eh et eat e bbbt et eehe e en s bt ees bt etae s nheeenn 36
PLOE .ottt ettt a e et ea e e bt eh e ettt ehe e e bt eh e et e bt e es bt ee bt eabeeetbeenaee 95
POTE DYWL ittt ettt ettt ea e ettt e h e bbbt eh e bt eat e bt ek e ettt e bt ee e e bt e et beeetae s nbeeens 41
POSIEION 1.ttt ettt et ettt ettt ea bt e eb e eat e e et e e as b e e bt e e b e e ehe e bt ekt et t e e bt e ae e beeebbeeeatae s nheeeas 37
PUINE _GIAPN....ooiiiiiii e e ettt et et e ehe ae e ea e et ettt ea e et e s et b e eae e et s 100
PIIIE_F@COTM. ......oiiiiiiiiii ittt ettt eate ettt eehe ettt ehb e eat e e sttt eaiteebbeeeab b beesbeeeaieeen 101
PTOJECIION .ttt et ettt et ettt e h et e eb bt eat e et ea b ettt eehb e eat b e ehe e es e bt eas b e bt e eh e et be e ehe e en s b bt e esbeeetae s nbeeenn 36
PUE TIER ATE ot ettt et ea e ettt ehe e bt e eh et e bt e eh e ettt ehe e et teaareenabe s saeeenn 78
R

FATLAOIIL ..ttt e e e et et ettt et ea e st eat e e eae et ea e sae e et a e eae e e et eae e e 41
FAELOM 1.ttt e e ettt etk eh et e she et sae et ea et s eabe et saeeaneea e 35
TEACLIVATION  TIITIC .....etiuiieitiie ettt ettt etite et bt et ettt e et s bt e e eae b e bt e eb bt eatte s ebeee e et beeebeeenabeeabbeeeanteetbesaennbeeans 46
TEAA .. ettt et et ettt et e a e eae et eh e ae ettt et ea e e et sheeaneea e 11
TEAA FTOML STIIME. 1ottt ettt ettt et ae et e eb e et e e bt e ae et e e ebeeeasbeeeb bt eeasteettaaenbeens 14
read from. STrINE_ SYIMD ........ooiiiiiiiiiii ettt ettt e et et eae s 15
FEAA_TECOTM ...ttt ettt e ettt s he et ettt e s e ebe e ebb b eatbe s sbe e eaateebae e aeetbeseaeeeaanes 15
TEAM SYIMID ..ottt ettt ettt eh e eat e sa e b e bt ettt eh e eat e e teeaeteteeebbeeeae 11
TEAA LOKETL ...ttt et ettt e h et ettt eh e eat e sabbe et e e ehe e et e ehbe e eatbe e teeattenbeeebbeeeae 11
TEAA. WITIAOW. .. vttt ettt ettt ettt ea e et e e ebe et e eb bt e ebt e ettt ebbeeeatbeesat b bennbeeebbeeene 28
TEAA. WINAOW TEXT ...ttt ittt ettt ettt et ettt e bt eat et e eb e et b e s sheees et beeebe e enabe e eb bt eenabeetbes e nbeeens 28
FECOTU ... oiiiii ittt ettt ettt et et es et ea e e ehe b eae e eu et 2esae e st eat e eb et eae e et es st eate et e s aeeaeeeanens 96
TESEE NEAAINE ... vvtiie ittt et e et ettt ea e et e e ehe e e e eb bt e eat b e ettt eabee e be e eabe e be s bt e ebbeeeae 38
FESOLULION ...ttt e ettt et et a et b ettt e eh et eae et ea e she ettt saeen e e 35
TULL ettt ettt et et ea et ehe e b et s b e e e eue et s ea e s bt eas e ehe eas e eas et eh st b et ea e ehe eae e s sheeae e eaeen ettt naeeaeeenaen s 46
S

SAVE PANTILION .......oooiiiiiiiiiiii e e e e e e e st 18
SAVE PECTUI@ . ...o..oiiiiiiiiiiiiit ettt et ettt et b ettt b et b eas e ea bt ae et et e e sae e eeate s 38
SAVE SYSEEINL . euue ittt euttetteeetteeas stbee ettt ettt ebb e et teeebeees ebbee ehbte et te e she e ea b e bb e £e bt e eh bt eat e e ehe e eaabe et e eatbe e et e eaanes 30
SCTOLL WITHAOW ...ttt ettt e et et she et e eab e eat she e ea st eatbe s she e eate e ebbeees sbbeeeaeeennnes 28
SEATCHL PALLEITI....eeuvtie ettt ettt e ettt ettt sht e et e ebb e eat sheeeasbeeabbe s she e et e ebbeees ebbeeeaeeenanes 24
SEIUA ..t e e et e e et ea s et a e e eae et e a e eae b s eat e e eae eae et esaesaeeennens 45
SEE CROICE ..ttt ettt et e eb e et bt ea e et she e bt e eh bt eat b e bt ea et en e ebbee bt e st e eaaees 82
SEE CROICE ATZ ..ttt ettt et ettt et et ettt eat ettt ebb e eat e et ea b eabbe s she e et e e she e eas b et e enaees 83
SEE_EXPIESSION ....c...eiuiiiittiitit ettt ettt et ettt te et e eh e et e s bt ea e ettt e bt e eh bt st b e b e eae b e eabteeeben s 100
SEE ITIPUL 1ttt ettt ettt ettt ettt eh et et eat e shb e eat e bt eeatt e bt e eh bt e e 4 ehe e ea bt e b e ehta e bt e eb bt e et ebbee eat e et e eaaees 14
SEE OPTIOM .ttt ettt ettt ettt ettt b e et ettt e ettt e eb bt eat e e bt ea bt et She et e bt eatt e bt e eabe b en e ebbee et b ente e eaaees 40
SEE OULPUL 1.ttt ettt ettt ettt ettt ettt sh e et e et ae ettt e eb bt eatt e e bt e ea b oot she e e bt e b bt eat b e bt e eabe s en e ebbee et it e te e eaaees 14

SEE PATATIL ...ceouiiiiiii ittt ettt ettt ettt et e e ettt e et e e ebe e eatte s ehe e ea b ettt e e bt e eb bt eata e bt ea bt e ehbee et it e sttt eaaees 99



Multilogic Computing Ltd Page 106

SEE PATAINL D ..o e et et e et et et et eae e e et e et e e 99
S SCIEEIN . eeuiee ettt euetete ettt e etteeebeeeabe e et bt eat e bt be ettt e bt easte s ehe e es bt et She e en bt e bt satt e bt e ea et en e ebbee eatte st e eaaees 29
SEE VALUE ...ttt ettt et et et b e et ea et ehe et e bt eatt e he e ea ettt ebbee et e st e e 17
SEE VALUE D ettt et ettt eh e et she e ea e ettt et e st e eaaees 17
SIIL .t ettt et e et e b e eat et et she b et es she et eh e b eae et e eae e s eheeae e ea e ettt eaeeenae e 22
] (<TS]S OO P T PRSP PRSPPI 33
SLEEPALL. ... e ea ettt ehe ettt eh bt e et sae e et e e 33
SOUILA ..ot ettt et ettt et et ettt ehe bt ea et ea e e et eh e eae e eb bt e e sae et en e st eaaens 38
SOTE ettt ettt ettt ettt ettt e ettt ettt ea e e bt eh e eat e et ea et e bt e ehe e e b4 ehe e ea e b e ehe s e bt e ekt ettt e ehe e ea s b b e e ehe b et te s ebeeenaneenaees 22
SEAE_VALIADIE .......oiiiiiiii e e et ettt et 98
SEEINE TOIEEN .. e ettt et ea e e ea e et she et b te et eae e 23
SUDSIIIIIZ ettt ettt ettt ettt ettt et et eh bt et e eb e eatte s bt e eb bt e e 4 ehe e ea b e bt eatt e bt e eb bttt ebbeeeat e et e eaaees 23
SUCCEEA ... ettt et et ettt et et a e eht e s h e et ea e ekt she et es e b eae et et s eate e a e en e e eaeeentens 19
SUPPIESS CLAUSE ...t euttett et ettt et ettt ettt e eae et e e ettt e ebb e eat e ettt ebbeeeat e e eeasbeeabbe e sheeeabe e e sbeeeaaebbeeeaeeennnes 17
SUPPIESS PATTIEION ... euttetettee ettt ettt et et et bttt e s she e ettt et eabte et teesbe e easbe e b beeeat sbeeebbeesataeaabeeesanaenbeeas ebbennaee 17
SYSERITL .. .ttt ettt ettt ee e et b et eat e et eh et e eh e ehe e bt ehe e et e s Satte bt e eh e eb bt ehe e et e e eat bt eebbee bt e et e eabees 41
SYSEEITIEIITIE . ..ttt ettt ettt ettt ettt et ettt et e e bt ae e bt e e ehe e eatae s ehe e easbe ettt e e beeeb bt eat b e ebe e eabte e shbee et b e bt e eaaees 46
T

BALL Lottt e et et ea e ehe b et et e a e eh b e ehe b e a e she et e s es st s et eea et st eneen e ae s 22
TEIMINALION. TIINIC...eeviie ittt et ettt ettt ettt et e et e e e e bt e esbte et te s she et e ettt ae s sbeeebbeeeatbe s sabeeeatbenn saaneetrens 46
B ettt e ettt et et ee et e e s e ettt ettt et et ee e et e suesaeeueeua 34
ETUILC Lttt et et ettt eae et et e eae et st b et e he e e ehe b e a e sh e eas e ea et ses e ettt sheeaneen e 22
IY UNTEY CRLL e ettt ettt e ea ettt she e es e ettt e satee et be e ehbe e sabe e eaeaens 80
TUTTL 11 ettt et ettt et ehe et e a e b st ea et ehe e ettt b eas e ea e b s e eae et she s ea e 34
EWIST ettt et e e et et et st ae e ehe bRt she et ea e e s e ea et sheeneen e 34
137 TS o) OO OO O OO P POV PUUPP PPN 21
U

UNEEY CEIL ..o e ettt sttt s ettt s e e 80
V

VBT TTICTIUL .. eutenetttente ettt eat e et eat e bt e bt eat e she e es bt ea e eas e e be e b et eaa bt e eb e eht bt e essteeabbe e eheeenabeeabbeeeue e e eeeaeeenabeeabbeeeae 29
VIBW._ POIIIE ..ttt ettt ettt ettt ettt bt et ettt e bt e eh et ea bt e eh e eat e saabe et be e ehe e ettt ehbe e eatbe e teeuttebe e et beeeae 36
VISIDLE ..o e e et ettt et e e ettt ae ettt ea e s h et she e 34
w

wait_for

wait_for_condition

wait_for_dnd

WAKE et e e et e e ehe bt she et ea e ses e sttt she e
WWETEE ettt ettt ettt et et sh e ehe e e a e b e s e e he e e ehe e b e Rt sheeae et ae sesbee ettt sheeneea e
WITEE TTISTAE . veeniie ettt ettt et ettt et ettt et e ettt she e e bt et st b e e ebeeesbte ettt e sae e et ben eenabeenabe s saeeenn 13
WIIEE INSIAC £O STIIMEZ . ceutueeiiiieiitiie ittt ettt ettt ettt e et ettt eat e s sbe e eaite e bbes ten bt e e ebeeeaibeenbbeeeaneennne ees 15
WITEE  SPACES .. .eeuuteentieettteettee ettt e esttee ettt ettt etbee et e e ebe bt ettt easee ettt she e enbe et sat b e sbeees bt ettt e ehe e et ben teanreenabe s saeeenn 13
WITEE SYIIIDY ...ttt et et ettt e at e ettt she e st e e et ehe e eh e ettt ehe e e be et e enateetbe s sheeenn 13
WITEE 10 STIIIIZ cenveentii ettt ettt ettt ettt e eb e eat e sh et e bt ettt eeatt e she e eabte et e eheeenbe ettt e sataeebbeeeae e beeeabeeeaneens 15
WIILE 10 STIINZ SYIMID.....eiiiiiiiiitiii ittt ettt et ettt et e s bt eate et e e e et ettt e eaiteebbeeeaeeenetaees 15
WITEE. WITLAOW ittt ittt ettt sttt et bt eat s bt e ate ettt e satt e ebe e eabte 4e e eheeesbe ettt e sasaennbeeeebe et esabeesueaenn 28



