
CS-PROLOG

Version 3.25.

(C) Copyright 1991 Multilogic Computing Ltd

MULTIPROCESSOR MODEL

MULTILOGIC COMPUTING Ltd

BUDAPEST HUNGARY

Multilogic Computing Ltd Page 2

1. Content

1. CONTENT ...2

2. INTRODUCTION..5

3. THE CS-PROLOG LANGUAGE ...7

3.1 SYNTAX OF CS-PROLOG ...7
3.2 LANGUAGE RESTRICTIONS FOR CS-PROLOG COMPILER ..7
3.3 ADDITIONAL POSSIBILITIES..8

4. BUILT-IN PREDICATES ... 10

4.1 INPUT-OUTPUT PREDICATES .. 11
4.2 DATABASE HANDLING PREDICATES .. 16
4.3 PREDICATES CONTROLLING EXECUTION ... 19
4.4 INQUIRING PREDICATES ... 19
4.5 ARITHMETICS ... 21
4.6 COMPARISON PREDICATES ... 23
4.7 STRING MANIPULATING PREDICATES ... 23
4.8 WINDOW HANDLING ... 25

4.8.1 Window Basics .. 25
4.8.2 Window Handling Predicates .. 27
4.8.3 Screen Levels .. 29

4.9 SYSTEM HANDLING PREDICATES .. 30
4.10 OPERATORS .. 30

4.10.1 Operator Basics .. 30
4.10.2 Predefined Operators .. 31
4.10.3 Operator Handling Predicates .. 32

4.11 GRAPHICS ... 32
4.12 MISCELLANEOUS SYSTEM PREDICATES ... 33

5. PARALLEL EXECUTION ... 36

5.1 PARALLELISM IN CS-PROLOG .. 36
5.2 SCHEDULING ON A SINGLE PROCESSOR.. 36
5.3 DISTRIBUTED CONTROL MECHANISM ... 36
5.4 THE ALGORITHM OF THE SUPERVISOR .. 38

5.4.1 Local Schedulers ... 39
5.4.2 Global Scheduling... 43

5.5 SIMULATION IN A MULTIPROCESSOR ENVIRONMENT .. 44
5.6 PROCESS MANIPULATING PREDICATES ... 44
5.7 IMPORTANT NOTES .. 47

6. THE PROGRAMMING ENVIRONMENT.. 49

6.1 PROJECTS ... 49
6.2 FOCUS .. 49
6.3 MENUS ... 50
6.4 BROWSERS .. 50

6.4.1 File browser .. 51
6.4.2 Focus browser ... 51

6.5 EDITORS ... 52
6.5.1 The scrap buffer .. 53

6.6 THE HELPKEY .. 53
6.7 THE MAIN MENU .. 54
6.8 FILE SUBMENU .. 54

6.8.1 Load project.. 55
6.8.2 Load file ... 55
6.8.3 New file ... 56
6.8.4 Save project .. 56

Multilogic Computing Ltd Page 3

6.8.5 Save file .. 56
6.8.6 Exclude file ... 56
6.8.7 Next file .. 57
6.8.8 Select file .. 57
6.8.9 Rename file ... 57
6.8.10 New system.. 57

6.9 EDIT SUBMENU .. 57
6.9.1 Enter ... 57
6.9.2 Modify .. 58
6.9.3 Delete ... 58
6.9.4 Insert .. 58
6.9.5 Load text ... 58
6.9.6 Edit external ... 59
6.9.7 Copy to scrap .. 59
6.9.8 Cut to scrap .. 59
6.9.9 Edit scrap ... 59
6.9.10 Focus .. 59
6.9.11 Search ... 59

6.10 EXEC SUBMENU ... 60
6.10.1 Run ... 60
6.10.2 Debug ... 60
6.10.3 Solution... 60

6.11 DEBUGGING CS-PROLOG PROGRAMS ... 61
6.11.1 The "box" model .. 61
6.11.2 The interactive trace ... 61
6.11.3 Setting breakpoints.. 62
6.11.4 Debugging Parallel Execution .. 63

6.12 OPTION SUBMENU.. 63
6.13 SETUP SUBMENU .. 64

6.13.1 External editor .. 64
6.13.2 Source pattern ... 65
6.13.3 Project pattern .. 65
6.13.4 Edit window size .. 66
6.13.5 Trace windows .. 66
6.13.6 Deadlock detection ... 66
6.13.7 Colors ... 66
6.13.8 Helpkey ... 67
6.13.9 Save setup ... 67

6.14 HELP SUBMENU ... 68

7. EXAMPLES ... 69

7.1 BANK ROBBERY PROBLEM ... 69
7.2 MAZE PROBLEM .. 69
7.3 EIGHT QUEENS PROBLEM .. 69
7.4 PUB PROBLEM ... 70
7.5 PARSER PROBLEM WITH MULTIPLE SOLUTION .. 70

8. EXTERNAL C INTERFACE .. 73

8.1 GLOBAL ITEMS .. 73
8.2 THE C INTERFACE FUNCTION SET .. 74

9. INSTALLATION ... 80

9.1 HARDWARE & SOFTWARE REQUIREMENTS ... 80
9.2 INTERPRETER SYSTEM INSTALLATION .. 80
9.3 INSTALLATION OF THE C INTERFACE IN INTERPRETER .. 83
9.4 COMPILER SYSTEM INSTALLATION ... 86
9.5 THE CS-PROLOG COMPILER .. 88
9.6 THE CS-PROLOG RUNTIME SYSTEM .. 90
9.7 INSTALLATION OF THE C INTERFACE IN COMPILER ... 91

Multilogic Computing Ltd Page 4

10. INDEX .. 92

Multilogic Computing Ltd Page 5

2. Introduction

At the very base CS-PROLOG is a standard PROLOG
interpreter/compiler. The compiler uses an extended WAM.

The CS-PROLOG system has two different models for the
execution of parallel programs depending on the number of
processors at the current machine on which it runs:

monoprocessor model

multiprocessor model

In both models the interpreter/compiler executes
different goals simultaneously. To each goal a so called
process is assigned. The process is represented by the
current path in the search tree underlaying to the goal.
The synchronization of the simultaneously working
processes is done by messages. The processes can be
suspended waiting for messages and these messages are the
recommended way of communication between processes. No
communication through common logical variables or by
modification of the common database is supported.
Processes can be generated or deleted dynamically during
runtime. Creation and deletion of processes as well as
communication is ensured by special built-in predicates
"new", "delete_process", "send", "wait_for" etc.

Used in a monoprocessor environment the execution of
the processes is controlled by an internal scheduler
(quasi parallel execution). Process exchange is only
possible at certain points of a process ("wait_for",
"hold").

Used in a multiprocessor environment it is possible to
launch processes on different processors and execute them
in parallel. It is possible to have conceptually more
processes in the system than processors. In this case on
each processor where more then one process is executed the
internal scheduler shares the processor between processes
the same way as it would do in the monoprocessor case.

Backtracking is supported even in a multiprocessor
environment and completeness is ensured by the distributed
backtracking algorithm.

However the forward execution is mostly parallel,
backtracking is generally sequential. The philosophy of
CS-PROLOG is similar to Hoare's CSP this is while
CS-PROLOG is standing for the abbreviation of
Communicating Sequential PROLOG.

Beside of the notion of processes and messages the
notion of simulation time is also introduced in CS-PROLOG.
Each process evolutes in each own local time. It is
possible to assign time duration to the execution of
subgoals by mean of special built-in predicates advance
and hold. A local clock ticks the elapsed simulation time
for each process. Note that the simulation time has

Multilogic Computing Ltd Page 6

nothing to do with the execution times of programs written
in CS-PROLOG. The simulation time is used to model time
durations in real systems. Time provides another
synchronization mechanism for processes.

In traditional monoprocessor simulation systems the
time is unique that is all local clocks at any moment show
the same global time.

In a multiprocessor environment maintaining the same
notion of global time causes a bottle-neck for the
parallelism. Two methods are known to solve this bottle-
neck: the so called conservative and the so called
optimistic approach (Time Warp). The current version of
CS-PROLOG supports the conservative approach. The future
versions of CS-PROLOG will support both of them.

When the time changes in discrete steps (may be not
uniformly) and events occur in discrete time moments we
speak about discrete simulation. If time changes smoothly
in a continuous way we are speaking about continuous
simulation. Continuous simulation models are generally
expressed with the help of differential equations.

In CS-PROLOG versions up to 3.2 it is possible to write
only discrete simulation models. Versions 3.3 or higher
will support both discrete and continuous simulation
modelling and will admit even the combination of them into
a so called combined simulation model. Special built-in
predicates and clauses serve to support this kind of
knowledge based modelling where discrete and continuous
components communicate through messages.

This documentation deals with the multiprocessor model
on any kind of transputer network with an IBM XT/AT under
DOS as host machine.

The CS-PROLOG system consists of two components:

- The CS-PROLOG interpreter with enhanced program
developing environment which enables you to
write, modify, run, test and debug your
CS-PROLOG program. This component serves for the
program development.

- The CS-PROLOG compiler with a byte-code
interpreter. Once you have finished the program
development you can compile your program into a
special format (abstract code for the
CS-PROLOG's byte code interpreter) and you can
run your application as a stand-alone program.
The execution speed is much higher for compiled
programs. Except some restrictions (detailed
later) the CS-PROLOG language is portable from
interpreter to compiler without any modification
and the built-in predicate set is fully
compatible.

Multilogic Computing Ltd Page 7

3. The CS-PROLOG Language

3.1 Syntax Of CS-PROLOG

The syntax is that of DEC10-PROLOG except:

- alternatives and groups in a clause are not
supported

- the built-in operator set is different

- the operator description differs

- comments until the end of the line are marked
with the "%" sign

3.2 Language Restrictions For CS-PROLOG Compiler

Compilation of PROLOG programs required the
introduction of several changes and restrictions in the
language itself. The clauses compiled by the compiler are
called in this description 'static', the clauses added
runtime by "add_clause" are 'dynamic'. The calls in the
static program that have no matching static clauses (with
the same name and arity) and are not calls of a built-in
predicate are considered dynamic. (So the compiler can not
signal undefined calls).

It is not allowed to have static and dynamic clauses
with the same name (even with different arities). E.g. if
in the program there is a clause

help(a,b,c).

you can not add dynamically a clause

help(e,f).

If such a clause is called statically it causes a
compile time error.

Multilogic Computing Ltd Page 8

The syntax of float numbers has changed. At least one
digit of the fractional part has to be given. E.g "1." is
considered as the integer 1 and the period symbol. So the
uncomfortable spaces can be avoided in clauses like

d(N,M):- M is N - 1.

In the interpreter version as the char sequence "1." is
interpreted as a float number a space has to be inserted
before the period symbol:

d(N,M):- M is N - 1 .

3.3 Additional Possibilities

It is possible to generate code statically for dynamic
predicates, i.e. to compile partitions of clauses that
will be modified dynamically during the execution. By
default the clauses in the source code are considered to
be static. Using the following pragma

dynamic_on.

the compiler will generate the code of subsequent clauses
as dynamic clauses. The original state can be reset using

dynamic_off.

The user can increase the efficiency of the code giving
more information about a partition with a "mode"
declaration. In this declaration the types of arguments of
a partition are specified:

"+" (in) the argument is always bound when
executing

"-" (out) the argument is always an unbound
variable when executing

"?" (unknown) we don't know anything about the type.

The "mode" declaration has the following form:

mode pred_name(in_out_sign1, in_out_sign2, ...).

Here "pred_name" is the name of the partition.There are
as many arguments as the arity of the partition and
"in_out_sign"-s are "+", "-" or "?" to specify "in", "out"
or "unknown" types respectively.

Multilogic Computing Ltd Page 9

For example the classical naive reverse program can be
improved using modes:

mode naive_reverse(+,-).

naive_reverse([A | X],Z):-
naive_reverse(X,Y), append(Y,[A],Z).

naive_reverse([],[]).

mode append(+,+,-).

append([A | X],Y,[A | Z]):-
append(X,Y,Z).

append([],L,L).

Multilogic Computing Ltd Page 10

4. Built-in Predicates

In the description of built-in predicates we use
different letters to indicate the different types of
arguments. Calling a built-in predicate with an argument
type other than indicated here will cause a run-time
error. Multiple letters mean a choice of several argument
types. The letters listed below refer to the following
argument types:

I non negative fixed point number
(e.g.0, 10)

N number (fixed or floating point number,
e.g. 0, -0.4)

C constant (identifier or string, e.g. jon
or "Helen")

L list (e.g. [1, X, y])

V unbound variable (e.g. X)

S simple value (not variable, list, or
compound term)

W window identifier (e.g. window_1)

F file identifier (e.g."file_1")

A value identifier (e.g. var_1)

E arithmetic expression (e.g. A + B)

X any of the above mentioned

If there is more than one argument of the same type
than they are indexed. In the following descriptions the
phrase "unifies it with X" means that if the unification
fails the call will fail as well.

A built-in predicate can be

- deterministic or non-deterministic

- backtrackable or non-backtrackable

Deterministic means that during backtracking no new
alternative is tried.

Non-deterministic means that during backtracking a new
alternative is tried, if exists.

Backtrackable means that during backtracking all global
changes are restored to their previous state (undo).

Non-backtrackable means that during backtracking the
global changes are not restored.

Multilogic Computing Ltd Page 11

Without explicit declaration predicates are considered
deterministic and non-backtrackable.

4.1 Input-Output Predicates

read(X)
read(WF,X)

Reads the next syntactically correct term either from
the default input channel or from the channel identified
by W (window) or F (file) respectively and unifies it with
X.

read_token(X)
read_token(WF,X)

Reads the next syntactically correct token either from
the default input channel or from the channel identified
by W (window) or F (file) respectively and unifies it with
X.

read_symb(X1,X2)
read_symb(WF,X1,X2)

Reads the next syntactically correct term either from
the default input channel or from the channel identified
by W (window) or F (file) respectively and unifies it with
X1. Unlike "read" "read_symb" unifies X2 with a so called
symbolic variable dictionary. Since PROLOG variable names
(identifiers beginning with an uppercase letter or
underscore) are substituted during reading with a system
generated identifier (an underscore followed by a number)
the user never can obtain the original symbolic form of a
variable. However the user may want to preserve the
symbolic form of the variables in the term read in order
to make them appear on the output in the original symbolic
form. The symbolic variable dictionary unified with X2
connects variables with their symbolic form. The
dictionary is a PROLOG list and contains one list element
for each different variable in the term read. For terms
containing no variables the symbolic variable dictionary
is an empty list. Every item has the following form:

[_nnn | "NAME"]

where _nnn is the system generated identifier of the
variable NAME. Note the variable names like _nnn identify
the same logical variable. So the user should handle the
read term and its symbolic variable dictionary together.

Multilogic Computing Ltd Page 12

E.g. it is advisable to compose a new term taking both of
them and adding the new term to the PROLOG's database by
"add_clause". Example: reading the term

a(B,C,D,C)

"read_symb" the symbolic variable dictionary will be
similar to

[[_123 | "B"],[_126 | "C"],[_129 | "D"]]

write(X)
write(WF,X)

Write the contents of X either to the default output
channel or to the channel identified by W (window) or F
(file) respectively.

nl
nl(WF)

Write a newline either to the default output channel or
to the channel identified by W (window) or F (file)
respectively.

writeq(X)
writeq(WF,X)

Write the contents of X either to the default output
channel or to the channel identified by W (window) or F
(file) respectively. (q is for quoted) Unlike "write"
"writeq" writes out a string argument with quotes if
necessary. Example:

writeq("A B")

gives

"A B"

on the screen while

write("A B")

gives

A B

on screen.

Multilogic Computing Ltd Page 13

write_inside(X)
write_inside(WF,X)

Write the contents of X either to the default output
channel or to the channel identified by W (window) or F
(file) respectively. Unlike "write" "write_inside" omits
the parentheses and commas of the outermost level if the
value of X is a list. Example:

write_inside([a,b])

gives

a b

on the screen.

display(X)
display(WF,X)

Write the contents of X either to the default output
channel or to the channel identified by W (window) or F
(file) respectively. The written term will be the same as
in the case of "write" but operator expressions (if any)
will appear in regular term format. Example:

display(a + b * c)

gives

+(a,*(b,c))

on the screen.

write_symb(X1,X2)
write_symb(WF,X1,X2)

Write the contents of X1 either to the default output
channel or to the channel identified by W (window) or F
(file) respectively. Unlike "write" "write_symb" expects
in its X2 argument a symbolic variable dictionary (see
"read_symb"). It writes out the X1 term in a such a way
that if a variable has an item in the dictionary then the
appropriate symbolic form is written instead of the system
generated variable name.

write_spaces(I)
write_spaces(WF,I)

Write a number of I spaces either to the default output
channel or to the channel identified by W (window) or F
(file) respectively.

open_file(C,CV)

Opens a file for reading. The first argument must be a
valid file name in the current operating system. If the
second argument is a constant it becomes the inner
identifier of that file; otherwise the variable V is

Multilogic Computing Ltd Page 14

matched with a file identifier supplied by the system. It
fails if the file could not be opened.

create_file(C,CV)

Opens a file for writing. The first argument must be a
valid file name in the current operating system. If the
second argument is a constant it becomes the inner
identifier of the file; otherwise the variable V is
matched with a file identifier supplied by the system. It
fails if the file could not be created. If the file
already exists it will be overwritten.

append_file(C,CV)

Opens a file for appending. The first argument must be
a valid file name in the current operating system. If the
second argument is a constant it becomes the inner
identifier of the file; otherwise the variable V is
matched with a file identifier supplied by the system. It
fails if the file could not be found nor created. If the
file already exists the next output requests will be
appended to the end of the file. If the file don't exist
yet a new file will be created.

close_file(F)

Closes a file identified by F.

set_input(WF)
set_input(WF,X)

Sets the default input channel either to the channel
identified by W (window) or F (file) respectively. If a
second argument is given the previous default channel
identifier is unified with it.

set_output(WF)
set_output(WF,X)

Sets the default output channel either to the channel
identified by W (window) or F (file) respectively. If the
second argument is given the previous default channel
identifier is unified with it.

get_input(X)

Unifies the current input channel identifier with X.

get_output(X)

Unifies the current output channel identifier with X.

read_from_string(C,X)
read_from_string(C,X,X1)

Reads a syntactically correct object from the constant
C and unifies it with X. C does not necessarily have to
contain one single PROLOG term. If C contains more than

Multilogic Computing Ltd Page 15

one term the first term is read. If X1 is given the
remainder string is unified with it.

read_from_string_symb(C,X1,X2)

Reads a syntactically correct object from the constant
C and unifies it with X1. It unifies X2 with the symbolic
variable dictionary. (See "read_symb".)

write_to_string(V,X)

Forms a string representing the content of X exactly as
"write" does and unifies it with V.

write_to_string_symb(V,X1,X2)

Forms a string representing the content of X1 exactly
as "write_to_string" does and unifies it with V. Unlike
"write_to_string" "write_to_string_symb" expects in its X2
argument a symbolic variable dictionary (see "read_symb").
It forms the X1 term in a such a way that if a variable
has an item in the dictionary then the appropriate
symbolic form is used instead of the system generated
variable name.

write_inside_to_string(V,X)

Same as "write_to_string" except that
"write_inside_to_string" omits the parentheses of the
outermost level and all the commas in that list if the
value of X is a list.

get0(X)
get0(WF,X)

Reads the next byte either from the default input
channel or from the channel identified by W (window) or F
(file) respectively and unifies it with X.

get(X)
get(WF,X)

Reads the next printable character either from the
default input channel or from the channel identified by W
(window) or F (file) respectively and unifies it with X.
Printable characters are the ascii code of which is
greater then 32.

read_record(X)
read_record(WF,X)

Reads the next character record either from the default
input channel or from the channel identified by W (window)
or F (file) respectively and unifies it with X. A
character record consists of all the characters between
the current character of the input stream and the next
newline character. The newline character itself won't
belong to the character record but will be removed from
the input stream.

Multilogic Computing Ltd Page 16

4.2 Database Handling Predicates

NOTICE: (for database handling predicates) If an
argument which is a clause contains an operator with
negative priority (e.g. ":-", ",") then it must be
enclosed in parentheses!

add_clause(X)
add_clause(X,I)

X must be a clause. Enters the clause X to CS-PROLOG's
database. The new clause is either appended to the end of
the partition of X or inserted as the Ith clause of the
partition. A partition is an ordered set of clauses that
have the same name. If I is equal zero or greater than the
number of clauses already in the partition then the clause
is appended.

delete_clause(C,I)

Deletes the Ith clause of the partition named C from
CS-PROLOG's database. If the clause can not be found
"delete_clause" sends error message.

delete_partition(C)

Deletes all clauses of the partition C.

get_clause(C,I,X)

Unifies the Ith clause of the partition C with X. If
the clause can not be found "get_clause" fails.

find_clause(X1)
find_clause(X1,X2)

X1 must be a partially qualified clause with the name
of the clause given. "find_clause" unifies X1 with the
first clause in CS-PROLOG's database that matches it.
Every time when "find_clause" is executed again during
backtrack it unifies X1 with the subsequent matchable
clause in a non-deterministic way. "find_clause" fails if
no more such clause exists. If X2 is given it is unified
with the serial number of the clause in its partition
(This predicate is non-deterministic and non-
backtrackable).

clause_count(C,X)

Unifies the number of clauses of the partition C with
X.

assert_clause(X)
assert_clause(X,I)

Performs the same task as the predicate "add_clause".
However when backtracking reaches this point the asserted
clause will be removed from CS-PROLOG's database. (This
predicate is deterministic and backtrackable).

Multilogic Computing Ltd Page 17

suppress_clause(C,I)

Performs the same task as the predicate
"delete_clause". When backtracking reaches this predicate
the suppressed clause will be reloaded to CS-PROLOG's
database with the same serial number as it had when it was
suppressed. (This predicate is deterministic and
backtrackable).

suppress_partition(C)

Performs the same task as the predicate
"delete_partition". When backtracking reaches this
predicate all suppressed clauses will be reloaded to
CS-PROLOG's database. WARNING: Intermixing backtrackable
and non-backtrackable data-base handling predicates for
the same partition can lead to unexpected results. (This
predicate is deterministic and backtrackable).

set_value(C,S)

Stores the simple expression S (anything that is not a
list or a compound term) as value of the global variable
named C. The previous value of the variable is
overwritten. The constant C becomes the inner identifier
of this global variable.

get_value(A,X)

Returns the value of the global variable A by unifying
it with X.

incr_value(A,X)

If the value of the global variable is a number then
"incr_value" increments it by one and returns the result
unifying it with X. If the value is not a number an error
occurs.

set_value_b(C,S)

Performs the same task as the predicate "set_value".
However when backtracking reaches this point the variable
will be reset to its previous value. (This predicate is
deterministic and backtrackable).

incr_value_b(A,X)

Performs the same task as the predicate "incr_value".
However when backtracking reaches this point the variable
set will be reset to its previous value. (This predicate
is deterministic and backtrackable).

comp(L,X)

Composes a new term from the elements of L and unifies
it with X. The first element in L will be the name of the
new term. The remaining elements will form the arguments
of the new term in the same order as in L.

Multilogic Computing Ltd Page 18

decomp(X1,X2)

X1 must be a term. "decomp" decomposes X1 to a list and
unifies it with X2. Its name will be the first element of
the list and its arguments will be the remaining elements
of the list in the same order as in the term.

save_partition(F,C)

C must be the name of a partition in the PROLOG's
database. "save_partition" stores the named partition to
the file F in text format. If the partition cannot be
found error message is sent.

load_file(C)

C must be a filename in the current operating system.
The file should contain syntactically correct PROLOG
clauses. "load_file" reads all clauses and adds them to
the PROLOG's database as "add_clause" would do. If the
file cannot be found it fails. If syntactical error occurs
then reading is abandoned and error message is sent. But
clauses previously read and added remain in the database.

local_add_clause(X)
local_add_clause(X,I)
local_delete_clause(C,I)
local_delete_partition(C)
local_get_clause(C,I,X)
local_find_clause(X1)
local_find_clause(X1,X2)
local_clause_count(C,X)
local_assert_clause(X)
local_assert_clause(X,I)
local_suppress_clause(C,I)
local_suppress_partition(C)
local_set_value(C,S)
local_get_value(A,X)
local_incr_value(A,X)
local_set_value_b(C,S)
local_incr_value_b(A,X)

The scope of the previously described database handling
predicates is global, i.e. changes in the PROLOG's
database made by one of them in one process is visible in
another process. Predicates with the "local_" prefix do
the same task as their global counterpart but their scope
is local to the calling process, i.e. changes in the local
database of a process is invisible for every other
process. The intermixed use global and local database
handling predicates inside a process isn't allowed and the
effect is undefined.

Multilogic Computing Ltd Page 19

4.3 Predicates Controlling Execution

succeed

Always succeeds.

fail

Always fails.

eq(X1,X2)

Unifies X1 with X2. "X1 = X2" is the same as
"eq(X1,X2)".

! cut
!(X) cut ancestor

If "!" (cut) is executed it always succeeds. When
backtracking reaches its calling point then "!" (cut)
prohibits every other choice between itself and its parent
call.

If "!(...)" (cut ancestor) is executed it fails unless
it finds an ancestor unifiable with X. When backtracking
reaches its calling point then "!(...)" (cut ancestor)
prohibits every other choice between itself and the found
ancestor unifiable with X. The ancestor to be found must
have been invoked through "ancestorable_call".

ancestor(X)

Tries to find the youngest ancestor unifiable with X.
The predicate fails if none is found. The ancestor to be
found must have been invoked through "ancestorable_call".

ancestorable_call(X)

X must be term representing a PROLOG call. If a call X
is referenced by an "ancestor" or "!(...)" (cut ancestor)
it has to be invoked through the "ancestorable_call"
predicate. E.g. "ancestorable_call(a_call(1,Z))" invokes
"a_call(1,Z)" as usual but later this call can be
referenced by either of "ancestor" or "!(...)" (cut
ancestor) predicates otherwise no ancestor would be found
and both of them would fail.

4.4 Inquiring Predicates

is_num(X)

Succeeds if the argument represents either a fixed or a
floating point number otherwise fails.

Multilogic Computing Ltd Page 20

is_int(X)

Succeeds if the argument represents an integer number
otherwise fails.

is_float(X)

Succeeds if the argument represents a floating point
number otherwise fails.

is_atom(X)

Succeeds if the argument represents an atom - name with
lower case initial letter or a string (anything between
double quotes) - otherwise fails.

is_file(X)

Succeeds if the argument represents a file identifier
otherwise fails.

is_window(X)

Succeeds if the argument represents a window identifier
otherwise fails.

is_value(X)

Succeeds if the argument represents a value identifier
otherwise fails.

is_list(X)

Succeeds if the argument represents a list otherwise
fails.

is_var(X)

Succeeds if the argument is an unbound variable
otherwise fails.

is_ground(X)

Succeeds if the argument is a ground constant variable
otherwise fails.

Multilogic Computing Ltd Page 21

type_of(X1,X2)

Unifies X2 with one of the constants

int
float
file
window
value
atom
list
var
expr
ground_constant
prolog_pred
nonprolog_pred

corresponding to the type of X1.

list_length(L,X)

Unifies the length of the given list L with X.

4.5 Arithmetics

All arithmetic functions are collected in the built-in
predicate "is" which appears in infix format:

X is E

E is an arithmetic expression composed of numerical
constants, variables, arithmetical built-in operators and
parentheses. Numerical constants are either integer or
floating point numbers. Variables must have numerical
values at the moment of evaluation otherwise an error
message is generated. The built-in arithmetic operators
are of either unary or binary type.

It is ambiguous to write

X is 1+2.

because it is not clear whether the period is a decimal
point or the end mark of the term. Also writing

X is 1-2.

is ambiguous because minus is considered to be the sign
and not an operator. To solve these problems leave spaces

Multilogic Computing Ltd Page 22

between number and period and between numbers and
operators:

X is 1 + 2 .
X is 1 - 2 .

The binary operators are:

E1 + E2 add

E1 - E2 subtract

E1 * E2 multiply

E1 / E2 divide

E1 mod E2 modulo

E1 ^ E2 power

If either operand of the binary operators has a
floating point value the result will be a floating point
number otherwise an integer number. Exception: the power
operator always generates a floating point number.

The unary operators are:

+E unary plus

-E unary minus

abs(E) absolute value

sqrt(E) square root

exp(E) exponential function

log(E) natural logarithm

sin(E) sine

cos(E) cosine

tan(E) tangent

asin(E) arc sine

acos(E) arc cosine

atan(E) arc tangent

floor(E) truncate decimal part

trunc(E) truncate decimal part

These predicates always return floating point values.
Exceptions: "unary plus" and "unary minus" return the same
type as their argument. "trunc" returns fixed point value.
The trigonometrical functions expect their argument to be

Multilogic Computing Ltd Page 23

in radian and the inverse trigonometrical functions return
their values in radian.

4.6 Comparison Predicates

N1 < N2 numerically less

N1 <= N2 numerically less or equal

N1 > N2 numerically greater

N1 >= N2 numerically greater or equal

N1 == N2 numerically identical

N1 =\= N2 numerically non-identical

C1 @< C2 lexicographically less

C1 @<= C2 lexicographically less or equal

C1 @> C2 lexicographically greater

C1 @>= C2 lexicographically greater or
 equal

These predicates test whether the appropriate relation
is true for the given two arguments. The two arguments
must be of the same type; no mixed argument type arguments
are allowed. Comparison of constants means lexicographical
comparison.

NOTICE: "X1 = X2" is a synonym of "eq" (see chapter
"Predicates Controlling Execution").

4.7 String Manipulating Predicates

string_length(C,X)

Unifies the length of constant C with X.

concat(C1,C2,X)

Unifies the concatenation of constants C1 and C2 with
X.

substring(C,I,X)
substring(C,I1,I2,X)

Unifies a substring of constant C with X. This
substring begins at the Ith or I1th character of C
respectively and is of the length I2 or until the end of C
respectively.

Multilogic Computing Ltd Page 24

search_pattern(C1,C2,X)

Searches the first occurrence of constant C2 within the
constant C1. If this pattern can be found then its index
otherwise zero is unified with X.

char_of(I,X)

I must be in the range [1,255]. "char_of" unifies X
with a single character constant of the ASCII code I.

code_of(C,X)
code_of(C,I,X)

Unifies X with the ASCII code of the first or the Ith
character of C.

Multilogic Computing Ltd Page 25

4.8 Window Handling

4.8.1 Window Basics

The notion of the window is the following. A window is
a rectangle on the screen defined by 5 numbers:

- row and column of upper left corner
(0 - 24, 0 - 78)

- number of rows and number of columns
(1 - 25, 1 - 80)

- attribute number which defines the foreground
and background color and the frame of the window

The colors are the normal IBM DOS color values:

0 - black

1 - blue

2 - green

3 - cyan

4 - red

5 - magenta

6 - brown

7 - white

The attribute is an integer. This number is used as a
16 bit pattern:

 0 7 8 F

 information about information about
 the frame colors

The left side byte can have any of the following 5
values:

 0 There is no frame on the window

Multilogic Computing Ltd Page 26

1 single frame

2 _ double frame _

3 vertical single, horizontal double frame

4 _ vertical double, horizontal single frame _

All types of frames need a one character wide border.
The size of the window always contains the rows and
columns needed for the frame.

The right byte of the attribute is divided into four
parts which have the same meaning as the original DOS
attribute:

 8 9 A B C D E F

 blinking

 background color

 intensity

 text color

Multilogic Computing Ltd Page 27

The attribute value can be calculated by the following
expression:

attr = 256 * frame_type +
 128 * blink_bit +
 16 * background_color +
 8 * intensity_bit +
 text_color.

4.8.2 Window Handling Predicates

create_window(I1,I2,I3,I4,I5,CV)

Creates a window. I1 is the number of upper row, I2 is
the number of left column, I3 is the number of rows, I4 is
the number of columns, I5 is the attribute. If the sixth
argument is a constant C then it becomes the inner
identifier of the window otherwise the variable V is
matched with a window identifier supplied by the system.

get_window(W,X1,X2,X3,X4,X5)

Unifies the last five arguments with the parameters of
the window W with the same meaning as in "create_window".

delete_window(W)

Deletes the window associated with the name W. Window
identifier W will be an atom. The window on the screen is
not affected.

assign_text(W,I1,I2,C)

Assigns the constant C to the window W. I1 and I2 stand
for the relative row and column number of the first
character of the assigned text calculated from the upper
left corner of the window. When opening window W this text
will be displayed automatically. The default is the empty
string (see also "read_window" below).

assign_key(W,I1,I2)

Assigns two "send" keys to the window W. I1 and I2 may
be identical and must represent the ASCII code of a key.
When in the window W the system waits for input pressing
one of the two assigned keys will send the input, i.e.
terminate the input. Defaults are the Enter and Escape
keys. This works only with the use of "read_window" and
menu predicates.

assign_global_key(L)

Assigns send keys to all windows in the system. L must
be list containing integer numbers of ASCII codes to
assign or an empty list. If L isn't an empty list
"assign_global_key" assigns all of them as an additional
set of send keys to all windows. The individual send keys

Multilogic Computing Ltd Page 28

provided by the window handler as default or assigned
using "assign_key" are still working. The additional send
key set works until another "assign_global_key" call
change it. If L is empty list then the additional send key
set is deleted but the individual send keys are not
affected.

open_window(W)

Opens the window W. The empty window will appear on the
screen with the assigned text if any. This predicate can
also be used to clear a previously opened window.

close_window(W)

Closes the window W leaving a black rectangle on the
screen. Its use is not necessary and has only been
retained for reasons of compatibility with the previous
versions.

change_color(W,I1)
change_color(W,I1,I2,I3,I4)

Changes the information about colors (right byte of
attribute) of the window W to I1 on the entire window or
on line I2 and column I3 for I4 character positions.

scroll_window(W,N)

N must be an integer. "scroll_window" scrolls the
window W up if N is positive and down if N is negative by
the absolute value of N lines.

write_window(W,I1,I2,C)

Writes the constant C to the window W. I1 and I2 mean
the relative row and column number of the first character
of the text calculated from the upper left corner of the
window.

read_window(W,I1,I2,I3,X)
read_window(W,I1,I2,I3,X,X1)

Executing this predicate first the cursor appears in
the window W at relative position (I1, I2). The user can
then type in text to the window using any of the cursor
and editing keys. The input can be finished by pressing
one of the "send" keys (see "assign_keys" above). Then the
argument X is unified with a constant which is extracted
from the window field beginning at (I1,I2) position and
length I3. X1 is unified with the ASCII code of the send
key used.

read_window_text(W,I1,I2,I3,X)

Performs the same task as "read_window". However the
cursor does not appear and "read_window_text" only reads
previously written text from the window.

Multilogic Computing Ltd Page 29

hor_menu(W,I,L,I1,I2,X)

"hor_menu" defines and creates a horizontal menu for
comfortable user input. W is the window that the menu
uses; I is the number of the row to be used in the window;
L is a list of sublists with the column position and the
menu item; I1 is the number of the item to be highlighted
first; I2 is the highlight attribute; X is a variable that
will be unified with the item selected or with 0 if the
Escape key was pressed. If the menu items contain only one
capital letter entering this letter chooses the first item
containing that capital letter.

ver_menu(W,I,L,I1,I2,X)

"ver_menu" defines and creates a vertical menu for
comfortable user input. W is the window that the menu
uses; I is the column to start at within the window; L a
list with constants as items to be displayed and returned;
I1 is the number of the item to be highlighted first; I2
is the highlight attribute; X is a variable that will be
unified with the item selected or with 0 if the Escape key
was pressed. If the constants contain only one capital
letter entering this letter chooses the first item
containing that capital letter. Cursor-left returns -1,
cursor-right returns +1 independent of which item was
highlighted last.

4.8.3 Screen Levels

It is often necessary to preserve the contents of a
screen before opening a new window if you want to get the
same state of the screen after closing that new window.
This cannot be done using "close_window" because
"close_window" clears part of the contents of the screen.
However it is possible to open a new level of the screen
and thereafter open the appropriate window. Closing that
new screen level you get the same screen state as before.
This can be thought of as if one puts a piece of glass on
the screen. The text under the piece can be seen but text
and windows displayed on it are printed only on that piece
of glass. If you return to the previous level it is as if
you take away the glass cover and look at the original
screen. There are 16 screen levels available one of which
is the actual screen level that is displayed. You can
arbitrarily switch between them.

set_screen(I)

I must be less than 16. "set_screen" makes the Ith
virtual screen appear on the display.

get_screen(X)

Unifies the number of the currently visible screen with
X.

Multilogic Computing Ltd Page 30

clear_screen
clear_screen(I)

Clears the currently visible screen on the display if
the first form is used or if I is the current screen.
Otherwise the Ith virtual screen will be cleared in the
memory but the display will not be affected.

copy_screen(I1,I2)

Copies the I1th virtual screen to I2.

open_level

Opens a new level.

close_level

Closes the most recently opened level.

4.9 System Handling Predicates

save_system(C)

Non implemented in the multiprocessor environment.

load_system(C)

Non implemented in the multiprocessor environment.

4.10 Operators

4.10.1 Operator Basics

An operator is characterized by its name, its type and
its priority. The type must be one of the following
constants:

pf - unary prefix

sf - unary suffix

lr - binary infix left to right

rl - binary infix right to left

The priority must be an integer in the range between
-3000 and 3000.

Multilogic Computing Ltd Page 31

Example: If ** is defined as binary infix operator left
to right with priority 8 and ++ is defined as binary infix
operator right to left with priority 4 then the expression

a ** b ** c ++ d ++ e

can be illustrated in the following parenthesized and tree
format:

((a ** b) ** c) ++ (d ++ e)

 ++

 ** ++

 ** c d e

 a b

If the direction and priority of the ** are changed to
right to left and 2 respectively then the same expression
will define a quite different term:

a ** (b ** (c ++ (d ++ e)))

 **

 a **

 b ++

 c ++

 d e

4.10.2 Predefined Operators

The built-in operators of CS-PROLOG are the following:

Name Type Priority

:- unary prefix -3000
:- binary infix left to right -3000

Multilogic Computing Ltd Page 32

, binary infix right to left -1000
< binary infix left to right 0
<= binary infix left to right 0
= binary infix left to right 0
\= binary infix left to right 0
> binary infix left to right 0
>= binary infix left to right 0
is binary infix left to right 0
@< binary infix left to right 0
@<= binary infix left to right 0
@> binary infix left to right 0
@>= binary infix left to right 0
=:= binary infix left to right 0
=\= binary infix left to right 0
+ unary prefix 200
+ binary infix left to right 200
- unary prefix 200
- binary infix left to right 200
* binary infix left to right 300
/ binary infix left to right 300
mod binary infix left to right 400
^ binary infix right to left 500
: binary infix left to right 600

4.10.3 Operator Handling Predicates

add_operator(C1,C2,I)

Creates a new operator with the name C1. C2 is the type
and I is the priority of the new operator. C2 must be the
one of the constants pf, sf, lr, or rl. I must be in the
range between -3000 and 3000.

Operators can be defined statically in the source
program as well. A clause "operator(C1,C2,I)" has the same
effect during the LOADing, ENTERing or MODIFYing as the
predicate "add_operator(C1,C2,I)".

get_operator(C,X1,X2)

C must be an operator name. Unifies X1 with kind (lr,
rl, sf, pf) and X2 with the priority of the operator C. If
C is not an operator name it fails. If C is defined with
multiple kind and X1 an unbound variable then the operator
with the first kind is returned considering the next
order: lr, rl, sf, pf.

4.11 Graphics

CS-PROLOG graphics are not yet implemented in the
multiprocessor environment. Future versions will provide
them.

Multilogic Computing Ltd Page 33

4.12 Miscellaneous System Predicates

sound(N1,N2)

Beeps in N1 Hertz frequency for N2 milliseconds.

color_mode

Succeeds if the system is in color mode and fails if it
is in black-white mode.

cpu_time(X)

Unifies X with the cpu time measured in milliseconds
returned by DOS.

datetime(X)

Unifies X with a list containing the actual year
(current year minus 1900), month (0-11, January = 0), day
in the year (0-365 jan 1 = 0), day in the month (1- 31),
day in the week (0-6 Sunday=0), hour (0-24), minute,
second.

pause

Waits until you press any key on the keyboard.

key_pressed

Succeeds if any characters are waiting in the keyboard
buffer otherwise fails.

key_accept(X1)
key_accept(X1,X2)

Unifies the ASCII code of the next character waiting in
the keyboard buffer with X1 and unifies its scancode with
X2. The scancode refers to the position of the key pressed
on the keyboard rather than to the character it triggered.
If the buffer is empty "key_accept" prompts you to enter a
character.

Multilogic Computing Ltd Page 34

egalf(X1,X2)

Succeeds if X1 and X2 are the same objects otherwise
fails. Two objects can be unifiable but not the same, e.g.

egalf(X,Y). fails

egalf(X,X). succeeds

egalf([1,2],[1,2]). fails (!)

eq(X,Y),egalf(X,Y). succeeds

make_ground
make_ground(X)
make_ground(X,I)

Unifies each unbound variable in the term X with a
unique, newly generated constant called ground constant. A
ground constant is a constant different from any other
constants of the system. The ground constants are numbered
from 0 (or from I if given) to 2^16-1. The ith ground
constant appears in the output as Xi. If it is called
without arguments it resets the ground constant counter to
zero.

abort

Aborts the execution.

set_option(X1,X2)
set_option(X1,X2,X3)

Sets the option X1 to value X2 (see OPTION menu
description in chapter "Programming Environment"). If the
third argument is given the previous value of the option
X1 is unified with X3. The meaning of parameters is as
follows:

X1 = 0 sound X2 = 0 off,
 X2 = 1 on

X1 = 1 error on undefined X2 = 0 off,
 X2 = 1 on

X1 = 2 tail recursion opt. X2 = 0 off,
 X2 = 1 on

X1 = 3 acknowledge X2 = 0 off,
 X2 = 1 on

X1 = 4 print X2 = 0 off,
 X2 = 2 trace,
 X2 = 3 dialog,
 X2 = 4 all

Multilogic Computing Ltd Page 35

garbage_collection

Performs explicitly called garbage collection. You will
see a little red window appear on the screen signalling
memory management.

random(X)

Generates a pseudo random number between [0,1] and
unifies it with X.

system(C)

C must be an atom representing a system command in the
current operating system. Performs the appropriate system
command and return to the CS-PROLOG run immediately. If
the execution of the operating system command was
successful it succeeds otherwise fails. You have to
reserve some memory for the system commands when you start
the CS-PROLOG system using the "/dosmem=N" option where N
denotes the amount of memory in Kbytes to reserve for
system command execution.

port_byte(I,IV)

I must be an integer within the range [0, 65535]. IV
must be either an integer within the range [0, 255] or an
unbound variable. This predicate serves for executing
input/output through hardware ports. I represents the
address of the hardware port. If IV is an integer then its
numerical value as a byte is sent to the Ith hardware
port. If IV is an unbound variable then a byte is fetched
from the Ith hardware port and its numerical value is
assigned to IV. Always succeeds.

Multilogic Computing Ltd Page 36

5. Parallel Execution

5.1 Parallelism In CS-PROLOG

CS-PROLOG is an extended PROLOG system which allows
parallel execution of PROLOG goals. A "process" is
assigned to each simultaneously executed goal. A process
is a PROLOG subprogram and works like an ordinary PROLOG
program except the handling of parallel control
predicates.

In a multiprocessor environment processes can be
created in separate processors. If no more than one
process is assigned to each processor then processes can
run parallel in real time. However when some of the
processes share the same processor more or less the
scheduling algorithm of the monoprocessor version is used
on the given processor.

5.2 Scheduling On A Single Processor

Since only one process can be "active" at a time on a
single processor other processes are in waiting state.
Scheduler allows the active process run until the process
reaches any of predicates causing its suspension or until
it solves its task. Then another activable process is
chosen until every process finishes its task on that
processor or they all fail.

Since the forward execution of processes results a
sequentialized order of execution, backtracking is
executed backward in this path. This means that everything
is undone until the last choice point even through message
sending operations. The last choice point is either a
Prolog choice point or a waiting operation or process
exchange.

5.3 Distributed Control Mechanism

Let's assume further that no more than one process is
assigned to any processor in a multiprocessor environment.
In this case a distributed control mechanism assures the
synchronization of the processes.

To understand the distributed control mechanism of
CS-PROLOG imagine that an ordinary CS-PROLOG interpreter
works on each processor. Until the processes do not use
the "new" and "send" built-in predicates (called
communication points) these interpreters are independent
and work in parallel. In forward step crossing a

Multilogic Computing Ltd Page 37

communication point increases the possible degree of
parallelism either by creating a new process or sending a
message for a waiting process.

The crucial point is met in the distributed control
mechanism when a process crosses a communication point
during backtracking. This can happen in two essentially
different cases:

- in failure backtracking

- in dead-lock backtracking

Failure backtracking occurs in a processor P when the
active process has failed. As a matter of fact this kind
of backtracking appears in ordinary sequential Prolog
interpreters too. However in the distributed environment
meanwhile processor P is doing failure backtrack the
interpreters of other processors can execute either
forward steps or failure backtracking too. If processor P
crosses a communication point during failure backtracking
the effect of the communication point should be undone. If
the created or addressed process is also on processor P,
this requirement is automatically fulfilled. This is true,
because due to the one processor available, the created or
addressed process could not get the control over the
processor yet, and the predicates new and send (see later)
being deterministic and backtrackable the process creation
and the message sent is undone or deleted. However if the
communication point affects another processor this effect
should be undone in a distributed way. For this purpose
the so-called anti-message is sent by the communication
point during backtracking. The anti-message forces the
interpreter of the receiver processor to backtrack to the
point where the original message was consumed.

Dead-lock backtracking is needed when the system
reaches a point where at least one process is waiting for
a message, while the others are in finished state or they
are also waiting for messages and no transient message in
the multiprocessor network. This situation is called
global dead-lock. In global dead-lock one process is
chosen (called forced process) for executing dead-lock
backtracking while the others are waiting for reactivation
by the forced process. The dead-lock backtracking
mechanism terminates when the backtracking process finds
an alternative path in its search tree which contains a
communication point. This communication point gives the
chance the system to leave the global dead-lock state
either by creating a new process or by sending a message.

Notice that in deadlock backtracking only one processor
is active executing the backtracking and all the others
are passive while in failure backtracking any processor
can be active by executing either forward steps or failure
backtracking. One can generally say that the main
difference between failure backtracking and deadlock
backtracking is in their parallelism. While the former is
parallel in nature the latter is sequential.

Multilogic Computing Ltd Page 38

5.4 The Algorithm of the Supervisor

In CS-PROLOG we distinct the local scheduler of
processors from the global scheduler of multiprocessing
system, however the local scheduler actually works as a
part of the global scheduler.

Some basic definitions:

(1) Active process:

the process currently executed on the processor
(a process being either in Running Forward
state, or Running Backward state or Transient
Waiting state)

(2) Waiting process:

the process that has not been activated yet or
is to be reactivated at a given time (because it
is suspended for a certain time interval)

(3) List of waiting processes:

the waiting processes assigned to the processor

(4) Terminated process:

the process that has successfully executed its
goals

(5) List of terminated process:

the terminated processes assigned to the
processor

(6) Frozen process:

the process that was stopped during its
execution by a "delete_process" call

(7) List of frozen processes:

the frozen processes assigned to the processor

(8) Blocked process:

the process that is waiting for a message

(9) List of blocked processes:

the blocked processes assigned to the processor

(10) Backtracked process:

the process backtracked before it has
successfully executed its goal

Multilogic Computing Ltd Page 39

(11) List of backtracked processes:

the backtracked processes assigned to the
processor

5.4.1 Local Schedulers

The algorithm of local schedulers implemented on a
single processor is the following:

(1) If there are some waiting processes,

then the local scheduler chooses the first one
of them, it will be the active process that
will get in Running Forward state and (2),

else (7)

(2) The active process remains in Running Forward
state

until

(a) it is terminated (all of its
predicates succeeded

(b) it reaches a wait_for-type predicate
call

(c) it has to backtrack because of lack of
matching alternatives

(d) it is frozen by another process

(e) it reaches a delete_process-type
predicate call

In case of (a) and (d) (3).

In case of (b)

if there is a proper message

then takes such a message and
continues according to (2)

else the process gets in the list of
blocked processes and (3)

In case of (c) backtracking, (5).

In case of (e) the process sends a freezing
command, and (2).

Multilogic Computing Ltd Page 40

(3) The processor examines the commands arriving
from the scheduler according to the following
viewpoints, then deletes the considered command.
(The order is unimportant if several cases are
examined at the same time.)

If

(a) a Pulling Back command has arrived to one
of the processes of any list,

then

if the process has taken the message,

then takes the process off the
list, it will be the active
process, and backtracks
according to (4),

else the local scheduler sends a
Backtrack Continuing command
to the Pulling Back process,
and (3).

(b) a Message Invalidating command has arrived
to one of the processes of any list,

then

if the process has taken the message,

then takes the process off the
list, it will be the active
process, and backtracks
according to (6),

else (3)

(c) a Process Creation Invalidating command has
arrived (see 5b.) to one of the processes
of any list,

then backtracking to the point of creation

(d) a Restarting command has arrived (because
of 5g.),

then puts the processes of the given
Transient Waiting list and the
backtracked processes to the list of
waiting processes

(e) a Backtrack Continuing command has arrived
to one of the processes of Transient
Waiting state,

then it continues the backtracking
according to (5)

Multilogic Computing Ltd Page 41

(f) a Backtracking command has arrived (because
of global dead-lock),

then

if there is a backtrackable process,

then takes such a process off the
list, it will be the active
process, and backtracks
according to (5),

else the dead-lock remains and
after sending a 'there is no
backtrackable process'
message to the global
scheduler the processor goes
to (3)

(g) no message has arrived

then (7)

(4) It is the same as (5), however if the
backtracking reaches the point where the message
sent by the Pulling Back process was taken, then
it sends also a Backtrack Continuing command to
the process that pulled it back originally.

(5) Backtracking: the backtracking process continues
its backtracking

until

(a) it reaches a send_b-like predicate
call

(b) it reaches a new_b-like predicate call

(c) it reaches a delete_b-like predicate
call

(d) it backtracks before its first
predicate call

(e) it reaches a wait_for-like predicate
call

(f) it reaches a wait_for_dnd-like
predicate call

(g) it can't choose a new alternative at a
choice point

Multilogic Computing Ltd Page 42

In case of (a)

if the backtracking is global passive,

then puts the process on the Transient
Waiting list, sends a Pulling
Back command to the process
taking the message, and (3)

else local or global active
backtracking, sends a Message
Invalidating command, and
continues backtracking, (5)

In case of (b) the algorithm is similar to that
of (a), with necessary modifications.

In case of (c) sends an Invalidating of Freezing
command to the frozen process, and (5).

In case of (d) puts the active process on the
list of backtracked processes, and (3).

In case of (e) it remains there until the
message is invalidated (because of
backtracking or dead-lock situation), then
puts the process on the list of blocked
processes, and (3).

In case of (f),

if there is a message that hasn't been
tried yet

then takes the next message, sends a
Restarting command and gets in
Running Forward state according
to (2),

else puts the process on the list of
blocked processes, and (3)

In case of (g), choosing a new alternative the
currently backtracked active process gets
in Running Forward state, the scheduler
sends a Restarting command to each
transient waiting and backtracked process,
then (2).

(6) Continuous backtracking without choosing a new
alternative, according to (9), while we reach
the invalidated message or the point of taking
"new_b", meanwhile if we reach a "send_b" or a
"new_b" call, then send further invalidating
commands. If we reach the point of taking the
message, then (5) (e-f) will be applied.

Multilogic Computing Ltd Page 43

(7) If there are processes that got matching
messages,

then these processes are taken off the blocked
list, and are put on the waiting list in
the same order, (1),

else (8).

(8) If there are frozen processes that got an
Invalidating of Freezing command (an other
process backtracked before the
"delete_process_b" predicate call freezing it,

then these processes are put on the list of
waiting processes, and (1)

else (3)

(9) It is the same as (5), however it considers only
(a-d), and referencing to (5) is substituted by
referencing to (9).

Note: if the scheduler gets to an endless loop (3)-(7)-
(8) on all processes, this is the case of global dead-
lock, that should be realized by the global scheduler.

5.4.2 Global Scheduling

The processors get a serial number. The
"rootprocessor", which is nearest to the host machine,
gets the number 1.

The algorithm of the global scheduler is the following:

I. Wait until one if the following cases is true:

(a) each processor gets in Terminated
state

(b) each processor gets in Backtracked
state

(c) the multiprocessing system gets in a
dead-lock situation

In case of (a) the CS-PROLOG program has
succeeded.

In case of (b) the CS-PROLOG program has failed.

In case of (c) distributed backtracking, (II.).

Multilogic Computing Ltd Page 44

II. Choose the processor with the lowest serial
number, which is not in Backtracked state, and
it has to get a command to backtrack (3). If
there is no such process, the program has
failed.

5.5 Simulation In A Multiprocessor Environment

The method of handling time is different from the
monoprocessor system since there is no global system time.
Instead every process has its own local time. When a
process waits for a message at a given point it has to
know which processes can send messages to this point.
Before it consumes a message it has to wait until every
process sends its message to this point. Then it has to
consume the message sent with the smallest time stamp. The
local time has to be modified using this time stamp. This
mechanism ensures that messages will be consumed in the
order of their sending time.

It is up to the user to achieve the above tasks (as
waiting for all messages and setting the right local time
using the built-in predicate "advance" for the latter
purpose).

The actual release of the multiprocessor version of
CS-PROLOG supports only this so called conservative
approach. This means that simulation programs written in
the single processor version generally does not run
correctly in this release.

To make correctly executed simulation programs the user
has to ensure the correct synchronization of the processes
in the simulation time.

The next release will contain the so called Time Warp
algorithm to ensure full compatibility between the old
monoprocessor version and the new multiprocessor version
and to make possible the so called optimistic distributed
simulation.

5.6 Process Manipulating Predicates

new(GOAL)
new(GOAL,NAME)
new(GOAL,NAME,START)
new(GOAL,NAME,START,END)
new(GOAL,NAME,START,END,PROCESSOR)

Creates a new process with goal GOAL, name NAME,
starting time START, and termination time limit END. Each
process should have a distinguished NAME. If START is
missing or is a variable it is set to the local time of
the caller process. If END is missing or is a variable it

Multilogic Computing Ltd Page 45

is set to 10^50. If PROCESSOR is given it identifies the
processor where the new process will be executed. A
processor identifier is a number between 1 and N where N
is the number of processor in the current configuration.
If this argument is missing the new process will be
executed on the caller's processor. The "new" predicate is
backtrackable, i.e. during backtracking through "new" a so
called anti-message is sent to the processor where the
original message created the new process. As a result of
the incoming anti-message the process is removed from the
system. (This predicate is deterministic and
backtrackable.)

Implementation hint! From implementation reasons,
during the execution of an application program the name of
a process is assigned to the processor that the process
was the first time allocated to. It means if a process
disappears from the system either due to backtracking or
successful termination or explicit deletion the name of
the process remains still assigned to its processor. So a
further recreation of any process with the same name (even
if the GOAL differs) must be directed to the same
processor.

new_unb(GOAL)
new_unb(GOAL,NAME)
new_unb(GOAL,NAME,START)
new_unb(GOAL,NAME,START,END)
new_unb(GOAL,NAME,START,END,PROCESSOR)

The "new_unb" predicate is deterministic and non-
backtrackable, i.e. during backtracking through "new_unb"
no anti-message is sent and therefore the created process
is never deleted.

Restriction: the created process must run on another
processor than the process creating it.

send(MESS,PROC_LIST)

Sends a message MESS to the processes whose names are
on the PROC_LIST. If the message is sent to one process
only the PROC_LIST must be a one element list. If you want
to send a message to all existing processes (broadcast) it
can be done using an unbound variable as PROC_LIST. The
local time of the sender process is time-stamped to the
message. The "send" predicate is deterministic and
backtrackable which means that during backtracking through
"send" a so called anti-message is sent to each process of
PROC_LIST forcing those processes to backtrack to the
point where the original message was consumed and as a
result of the incoming anti-message the original message
is removed.

send_unb(MESS,PROC_LIST)

The "send_unb" predicate is deterministic and non-
backtrackable which means that during backtracking through
"send_unb" no anti-message is sent to the processes of
PROC_LIST.

Multilogic Computing Ltd Page 46

wait_for(MESS)
wait_for(MESS,T)

If a process executes a "wait_for" predicate and there
was a message M sent to it using the "send" predicate (see
above) and MESS and M are unifiable then the unification
takes place and the waiting process continues its
execution. If there was no such message the process is
suspended until an appropriate "send" is executed by
another process and a matching message is sent to the
waiting process. If the second argument is given
"wait_for" unifies T with the time-stamp of the message M.
(This predicate is deterministic and backtrackable.)

wait_for_dnd(MESS)
wait_for_dnd(MESS,T)

Does the same thing as "wait_for" except that if the
first message received leads to failure and backtracking,
taking in account the other messages that might have
arrived also fails the process is suspended waiting for
further messages. Thus the suspended process continues
backtracking only after a global dead-lock. (This
predicate is non-deterministic and backtrackable.)

wait_for_unb(MESS)
wait_for_unb(MESS,T)

Non-backtrackable version of "wait_for". The message
consumed by it can not be put back to the system during
backtracking.

Restriction: the sender and the receiver processes
should be on different processors.

advance(T)

The execution of the active process is NOT suspended
for T time units. (As it is for "hold(T)" in the
monoprocessor version.) Rather the local time of the
caller process is incremented by T. In the multiprocessor
environment there is no global system time each process
has its own local time updated by the "advance" or the
"wait_for_.." built-in predicates.

active_process(AP)

Unifies AP with the name of the active process.

message_arrived(X)

If there is a message sent to the active process and
unifiable with X then succeeds otherwise fails. X is not
unified with the message even if the predicate succeeds!

termination_time(P,T)

Unifies T with the prescribed termination time limit of
process P.

Multilogic Computing Ltd Page 47

local_time(T)

Unifies T with the local time of the caller process.

set_local_time(T)

Sets the local time of the caller process to T if the
local time is less than T.

own_processor(OP)

Unifies OP with the identifier of the processor that
runs the caller process.

max_processor(MP)

Unifies MP with the maximal number of processors in the
network. The processor identifiers are in the range of
(1,MP). The maximal value of MP is 254.

p_make_ground(X)

Unifies each unbound variable in the term X with a
constant which is unique in the whole multiprocessor
system. Notice that "make_ground" uses constants which
unique only on the caller processor.

terminate_system

Forces all processes to immediately terminate and the
system considers them as successfully terminated processes
therefore the whole system successfully terminates.

5.7 Important notes

Important note! If the "!" (cut) has effect on a
"wait_for" predicate it causes an error! Avoid
constructions like the following:

 a :- b , !.

 b :- wait_for(c).

The use of "run" predicate to start the CS-PROLOG
program is not needed any more in the multiprocessor
version. To start your program type only your "Goal"
(single goal only).

All database handling predicates have a "local_"
version. The principle of CS-PROLOG claims that processes
can only communicate via messages. However the ordinary
database handling predicates allow the communication of
processes running on the same processor through the
database. In some cases this feature may be advantageous
however extremely dangerous. For example after
reconfiguration of your system two processes communicating
through database can run on different processors

Multilogic Computing Ltd Page 48

preventing them in communicating through the database. In
order to avoid the undisciplined communication between
processes one can use the "local_" versions of the
database handling predicates. These exclude the
possibility of communicating through database even between
processes running on the same processor.

The correctness of the distributed deadlock mechanism
becomes unpredictable if process communication is done
through the database.

Multilogic Computing Ltd Page 49

6. The Programming environment

6.1 Projects

In CS-PROLOG there is no real modularity but the
environment supports development of programs consisting of
several (more than one) files. The set of files forming a
program we call project. The file containing the file
names of a project we call 'project file', the PROLOG
files are called 'source files'.

There are some restrictions when working with projects.
One partition (clauses with the same name) must not be
split into different source files. If you use operator
declarations the order of source files (in the project
file) can be important. If an operator is declared in a
source file you can use it in the rest of sources
following this one.

All source file names must be different names.

6.2 Focus

In the environment of CS-PROLOG there is always a
selected source file and a particular selected clause
inside this file (unless the project is empty or a source
file is empty). Several actions are working with this
selected file or clause (such as 'exclude(file)' or
'delete(clause)'). This selection we will call focusing,
the selected clause is the clause we are focused on.

The clause we are focused on is highlighted in the
observer window under the main menu. You can move the
highlight (the focus) inside the current source file using
the following keys:

Up, Down Moves highlight one clause up
or down.

PgUp, PgDn Moves highlight one page up or
down.

Home, End Moves highlight to the first
or last clause in the actual
window.

Ctrl-Home, Ctrl-End Moves highlight to the very
first or to the very last
clause of the file.

There can be comments in a source file. A comment
belongs to the clause following it. So you can enter,

Multilogic Computing Ltd Page 50

modify and delete comments only focusing on this clause
and then modifying it.

6.3 Menus

In the environment you can select the action you want
to perform using menus. A menu is a list of identifiers,
one of these names is highlighted. You can select the
desired item either by positioning the highlight with
Right and Left in horizontal menus, with Down and Up keys
in vertical menus, and then pressing Enter. Pressing the
upper-case letter contained in the given item will select
this item as well.

In several cases there are some menu items which are
not selectable (e.g. delete(clause) if there is no clause
in the source file). These items are displayed in
different color.

You can always return from a menu to the previous level
of the environment pressing the Esc key. This is not true
for the main menu. You can leave the CS-PROLOG environment
only selecting the Quit item. In a vertical menu you can
escape from it not only with Esc but also pressing the
Left or Right key. In this case the next vertical menu is
pulled down (if any).

6.4 Browsers

If you want to choose a file name or a predicate name
(e.g. to load it, or to focus on it) using a browser you
have the possibility to select it from the list of all
existing names. This means that you don't have to type in
the name (of a file or of a predicate). You get all
possible names in a window, the names are sorted in
alphabetical order. One name is highlighted, you can use
cursor keys to choose from the list. If all names cannot
be displayed in one window, a '<' or '>' sign indicates in
the window corner that there are more items in that
direction. The function keys for the browsers are the
following:

Enter: Select the highlighted item.

Esc: Quit the browser without
selection.

Cursor keys: Move highlight.

PgUp, PgDn: Display the previous or next
portion of items.

Home, End: Move highlight to the first or
last item in the window.

Multilogic Computing Ltd Page 51

Ctrl-Home, Ctrl-End: Move highlight to the very
first or very last item in the
browser.

A,B,C, ... ,Z: Move highlight to the next
name beginning with this
letter.

There are three special browser types in the system,
the file-browser, the focus-browser and the breakpoint-
browser. The latter one will be described in detail in the
chapter dealing with the debug facility.

6.4.1 File browser

File browsers are used to select a file name from the
disk. When it is called there is a pattern given that
defines which files are to be displayed. E.g. the pattern
'*.pro' means all files with extension 'pro'.

The file browser is a double browser. Two windows
appear on the screen. In the lower one the file names in
the current working directory are displayed that match the
specified pattern. In the upper window all subdirectories
of the current working directory are listed including the
'..' (parent) directory. You can select a file name in the
lower window, using the function keys described in the
previous section, but if you want to change directory
press the

Tab

key. You will have the possibility to select a new
directory name. After selecting a directory name the new
list of files and subdirectories is displayed. To enter a
path name explicitly press the Tab key again in the upper
window.

6.4.2 Focus browser

When you want to select a clause in the program to
focus on you can use the focus browser. If there is only
one source file in the project a normal browser will be
displayed. If there are more source files a double browser
is used (similarly to the case of the file browser). In
the lower window the clause names of the current source
file are listed, in the upper one the source file names
are displayed. You can get into the upper window pressing
the

Tab

key. After selecting a new source file the new list of
clause names is displayed in the lower window.

Multilogic Computing Ltd Page 52

6.5 Editors

In the CS-PROLOG environment when you enter a text the
built in editor is used. You can either type characters or
execute an editing function pressing a function key listed
below. There is one exceptional window - the clause
editing window (used for entering and modifying clauses) -
where some keys have a special meaning.

Esc: Quit the editor window without
entering the text.

Enter: (normal windows) Quit the editor window
accepting the entered text.

Enter: (clause edit window) Move cursor to the
beginning of the next row.

F10, Ctrl-X, Alt-X, Ctrl-Enter: (clause editing window)
Quit the editor window
accepting the entered text.

Cursor keys: Move the cursor in the window.

Home, End: Move the cursor to the top-
left or bottom-right corner of
the window.

Ctrl-Left, Ctrl-Right: Move the cursor to the
beginning or end of the
current line.

Ins: Switch between insert or
overwrite mode.

Del: Delete the character in the
cursor position.

Backspace: Delete the character preceding
the cursor position.

Tab, Backtab: Move cursor to the next or
previous tabulator position.

F1: Insert an empty line under the
current line.

F2: Delete the current line.

F3: Split the current line at the
position of the cursor.

F4: Join the current line with the
next one.

Multilogic Computing Ltd Page 53

6.5.1 The scrap buffer

The scrap buffer contains a character string. This
string can be created with Copy to scrap or Cut to scrap
command and it can be modified with the Edit scrap command
(for the description of these commands see the Edit
chapter). The scrap buffer can be inserted in an editor
window using the F5 or F6 keys:

F5, F6: These functions are available
only when using the Edit-Enter
or Edit-Modify menu-items. You
can insert the scrap-buffer.
F5 simply inserts the scrap
without modifying the rest of
the editor window. F6 scrolls
down the window under the
current line to make room for
the scrap.

The scrap buffer is very useful when entering clauses
that are very similar to each other.

6.6 The helpkey

On any place Pressing the helpkey you can get
information about the environment anywhere. This key is
Alt-h by default but any other key can be chosen for this
purpose in the Setup submenu. So you can read a detailed
description about the function you are currently using.

The help texts are stored in a file named:

csprolog.hlp

This file is searched in the current working directory and
in the directory set in the environment variable CSPHOME.
If this file is not found the help facility is not
available.

Multilogic Computing Ltd Page 54

6.7 The main menu

In this menu you can choose one of the following
activities:

File: Changing the structure of the project.

- Load a new project from the disk.
- Load a new source file to the project.
- Add a new, empty source file to the project.
- Save the project.
- Save the source file.
- Delete a file from the project
- Select the source file to focus on.
- Rename the source file.
- Clear the data base.

Edit: Changing the current source file.

- Enter a new clause.
- Modify or delete a clause.
- Load clauses from a file on the disk.
- Edit the source file with an external editor.
- Modify the scrap buffer.
- Focus on a specific clause.
- Search a clause containing a specific string.

eXec: Execute a goal-sequence.

- Run a goal.
- Debug a goal.
- Run a goal and display the variable instantiations.

Option: Set, load or save the values of the
CS-PROLOG options.

Setup: Change some global parameters of the
environment.

Quit: Exit to the operating system. If you
have modified files that have not been
saved you will be given a chance to
cancel the Quit command and save your
files.

Help: Get more help.

6.8 File submenu

In this submenu you can change the structure of the
project.

Multilogic Computing Ltd Page 55

6.8.1 Load project

This action loads source files described in a project
file to the environment. The current project is deleted
(if any). If the current project has modified and not
saved source files the user is asked for confirmation of
the deletion.

The project file is a simple text file with file names
of the source files. If the extension of a source file is
the same as the 'source file pattern' (see setup submenu),
the extension can be omitted. (This extension is by
default: 'pro'.) When saving a project the system creates
such a project file.

Selecting the load project submenu item you are asked
for the project file name. If the extension of the file is
the same as the 'project file pattern' (see setup submenu)
the extension can be omitted. (This extension is by
default: 'prj'.) You can enter a partially defined file
name using the wildcard characters '*' and '?'. In this
case the file browser will be invoked with this name as
the pattern to match (see the description of the file
browsers). Entering an empty line will invoke the browser
with the 'project file pattern'. So if you leave the
default value of this pattern entering an empty line you
will get in the browser all files with the extension
'prj'.

If the system encounters a syntactically wrong clause
an error message is displayed and you can correct the
clause in an editor window. Escaping from this editor you
can ignore the incorrect clause.

After loading a project the focus is set to the first
clause of the first source file.

6.8.2 Load file

Loading a source file means adding a new source file to
the project. If in the new file there is a clause with the
same name as a clause in an old file this new clause is
not added. After the load the focus will be on the first
clause of the new source file.

Selecting the load file submenu item you are asked for
the source file name. If the extension of the file is the
same as the 'source file pattern' (see setup submenu) the
extension can be omitted. (This extension is by default:
'pro'.) You can enter a partially defined file name using
the wildcard characters '*' and '?'. In this case the file
browser will be invoked with this name as the pattern to
match (see the description of the file browsers). Entering
an empty line will invoke the browser with the 'source
file pattern'. So if you leave the default value of this

Multilogic Computing Ltd Page 56

pattern entering an empty line you will get in the browser
all files with the extension 'pro'.

If the system encounters a syntactically wrong clause
an error message is displayed and you can correct the
clause in an editor window. Escaping from this editor you
can ignore the incorrect clause.

6.8.3 New file

Selecting the new file submenu item you can create a
new - empty - source file in the project. The system asks
for the name of the new file. If the extension of the file
is the same as the 'source file pattern' (see setup
submenu) this extension can be omitted.

6.8.4 Save project

When you want to save a project you have to enter the
output file name. If the project was created with load
project the name of the loaded project file is displayed
so you simply have to send it with the Enter key (of
course only if you don't want to change the file name).

When saving a project only those source files are saved
which were modified.

6.8.5 Save file

You can save a source file alone without saving the
project. You are asked for the output file name in the
window you will find the original file name. If you change
this name that does not change the source file name in the
project.

6.8.6 Exclude file

Selecting this menu item means the deletion of the
current source file from the project. It does not delete
any file from the disk! The clauses of the source file are
deleted only from the data base of the CS-PROLOG
environment.

Multilogic Computing Ltd Page 57

6.8.7 Next file

This action serves for focusing on the next source
file. If you want to focus on a named source file use the
Select file command described in the next chapter.

6.8.8 Select file

Choosing the Select file menu item you get a browser
where you can select the source file to focus on.

6.8.9 Rename file

You can change the source file name using this command.
The renaming is done only in the CS-PROLOG environment.
There is no change on the disk! When the project or the
file is saved the new file name is used.

6.8.10 New system

This command is used to initialize the whole CS-PROLOG
environment. The project, source files, all dynamically
added data will be deleted. The state of the environment
will be the same as it was when you started the CS-PROLOG.

6.9 Edit submenu

The commands in this submenu serve for modification of
the current source file.

6.9.1 Enter

When you choose this menu item an editor window is
opened where you can type in a new clause. If the clause
syntactically is not correct an error message is displayed
and you have to correct the clause. Only one clause can be
entered at a time.

The new clause is inserted following the focused one.
There is one exception: when a partition with the same
name as the new clause exists already and the focused
clause does not belong to this partition. In this case the
new clause is inserted as the first clause of this
partition if the focus is above the partition and it is

Multilogic Computing Ltd Page 58

inserted as the last clause if the focus is under the
partition.

After entering a new clause the focus is always set to
itself.

6.9.2 Modify

You can modify the focused clause. It is not allowed to
change the name of the clause. (To copy a clause (with
changes) use the Copy scrap and then Enter and then the F5
or F6 key.)

6.9.3 Delete

Selecting this menu item the system deletes the focused
clause (without warning). The clause following the deleted
one will be the new focused clause (if the last clause is
deleted the focus will be put on the previous one).

6.9.4 Insert

Selecting the Insert command you can enter new clauses
in the editor window. Unlike the Enter command this
command allows to enter more than one clause. Every clause
has to begin in a new line.

The new clauses are appended to the end of the source
file even if the focus is not on the last clause. The
first of inserted clauses will be the new focused one.

6.9.5 Load text

This command enters new clauses from a disk file. You
can specify the file to load in the same way as it is
described in the Load file chapter.

The difference between the Load text and Load file
commands is the following. Load text loads clauses into
the current source file while Load file adds the file as a
new source file to the project.

The new clauses are appended to the end of the source
file even if the focus is not on the last clause. The
first of loaded clauses will be the new focused one.

Multilogic Computing Ltd Page 59

6.9.6 Edit external

If you want to make major changes in a source file a
text editor may be more convenient than the editing
facilities of the CS-PROLOG environment. This command
makes it possible. (It contains an implicit Save file
before editing, and Load file after editing.)

You have to specify the text editor you want to use in
the Setup - File editor menu item.

6.9.7 Copy to scrap

The character string of the focused clause is copied to
the scrap buffer. (For the definition of the scrap see the
chapter describing the Editor facilities).

6.9.8 Cut to scrap

The character string of the focused clause is copied to
the scrap buffer and then this clause is deleted. This
command has an identical effect as the Copy to scrap,
Delete command sequence.

6.9.9 Edit scrap

You can modify the scrap buffer in an editor window.
There are no syntactical restrictions for the content of
the scrap.

6.9.10 Focus

You can select the clause to focus on using the cursor
keys in the main menu. If you want to specify explicitly
the name of the clause to focus on then use this command.
Entering an empty line as name invokes the focus browser
(see the focus browser chapter) where you can choose from
the list of the clause names.

6.9.11 Search

Use this command to find a clause containing a specific
string. The search begins in the clause following the
focused one (so to search in the entire source file, you

Multilogic Computing Ltd Page 60

have to focus on the top clause first). The search is
performed only in the current source file. To search in
another source file you have to focus on it first.

If an empty search string is entered the system
displays the previous search string (if any) and then it
can be reentered or modified.

6.10 Exec submenu

This submenu serves for executing CS-PROLOG
goal-sequences. When you select one of the Run, Debug and
Solution menu items you can enter a goal-sequence to
execute. This sequence can be max. one line long. If you
send an empty line the system displays the previous
goal-sequence which can be reentered (after a modification
if wanted).

6.10.1 Run

This command simply executes the goal-sequence. The
"system dialog window" is opened by default. After the
execution the environment indicates its success or failure
displaying a SUCCEED or FAIL message on the screen.

6.10.2 Debug

This menu item serves to trace CS-PROLOG goal-sequences
with the interactive debugger. The usage of the debugger
is in the next chapter.

6.10.3 Solution

If you want to execute a CS-PROLOG goal-sequence to get
the value of some output variables then use the Solution
menu item. It executes the goal-sequence and after the
successful termination the matched values are displayed
for all variables in the goal-sequence. Then then system
asks:

Continue(y,n)

Answering with 'y' key will cause a backtrack and
another solution will be displayed (if any).

Multilogic Computing Ltd Page 61

6.11 Debugging CS-PROLOG programs

6.11.1 The "box" model

To explain the CS-PROLOG interactive trace facility it
is helpful to define the following "box model" of a
predicate. Each predicate is enclosed in a box. The box
has two entering ports and two exiting ports.

 > Entry Ö-------------------------Ì + Success
 -----> ° ° ----->
 ° Predicate definition °
 - Failure ° ° < Re-Entry
 <----- Û-------------------------ì <-----

The symbols ">", "+", "<", and "-" are the symbols of
the four ports. The Entry port is used when a predicate is
evaluated at the initial invocation of the predicate. The
Success exit is used after successful execution. The
Failure exit is used after failed execution. The Re-Entry
port is used during back tracking when CS-PROLOG tries to
find new alternatives. If a predicate is traced all ports
are displayed on the trace screen.

6.11.2 The interactive trace

You have to enter your goalsequence in the Debug
command. CS-PROLOG will stop at the entry point of the
first predicate to be executed. Now the user can control
further evaluation with the following keys:

Down or Enter Stop at entry port of the next predicate
to be evaluated. If the current
predicate has a body the first call in
that body is next to be traced.

Right Stop at entry port of the next predicate
called after the termination of the
current one. In contrast to Down, Right
does not trace the body of a predicate
but only the predicates after its own
evaluation.

Up Stop at the next entry port encountered
after terminating the execution of the
parent of the traced predicate. This
means no further stop while executing
the body of the parent.

G Go without stop to the next break point
(see below how to set break points).

Multilogic Computing Ltd Page 62

Grey + (The plus key on the numeric keypad!)
Force the executed call to succeed. The
variables are not instantiated.

Grey - (The minus key on the numeric keypad!)
Force the executed call to fail.

A, Q or Esc Abort the execution.

F5 Switch between trace screen and the main
screen of the environment. You get into
the main menu, where you can change the
focus and edit your program. To return
to the trace, select any item except
Edit, or press Esc.

F6 Switch between current screen and the
output screen. Press any key to return
to the trace.

X The trace skips the current window for
one step. In a multiprocessor
environment it makes possible to slow
down the given processor or to
concentrate only on one processor.

S Set trace and break points (see below).

6.11.3 Setting breakpoints

The predicates of the program (both the built-in and
PROLOG predicates) can be marked as a breakpoint
tracepoint or gopoint. If a breakpoint predicate is called
the trace stops before calling it and the user gets the
control. The trace does not stop on tracepoints but all
ports (see box model) are displayed. Gopoint is similar to
the breakpoint but when it is called first time it looses
this marking.

After typing the S command (at the trace level), the
user is asked whether he wants the list of built-in system
predicates or one of user defined predicates. Answer with
b or p. Next a new browser-window will appear with a list
of the specified predicates in alphabetic order. The first
name is highlighted. You can move the highlight with the
cursor keys and PgUp and PgDn keys, similarly as in other
browsers. Several letter-keys have here a very special
function (so pressing a letter-key does not mean
highlighting the next name beginning with it).

F Search a name. You are asked for a
string, and the highlight will be put on
the name which has the longest beginning
common slice with this string.

T Set the highlighted predicate to be a
tracepoint.

Multilogic Computing Ltd Page 63

B Set the highlighted predicate to be a
breakpoint.

G Set the highlighted predicate to be a
gopoint.

U Unmark the highlighted predicate.

C Unmark all predicates

Enter, Esc Finish breakpoint setting. Both keys
have the same effect, Esc does not undo
the markings.

1,2 ... 9: You can get the browser with as much
columns as the key you pressed. (The "~"
sign at the end of a name means that
this name is longer then the length oh
the field.)

6.11.4 Debugging Parallel Execution

If there is more than one processor in the system the
trace screen can be split into several windows. The trace
list of different processes running on the same processor
is displayed in the same window but the trace list of
different processes running on different processors is
displayed in different windows.

Using the trace window facility the windows are
generated for processors instead of processes. For each
processor the one-window trace facility is available in a
separate window. On each window there is a headline
containing the following information:

[processor_id] process_name T=local_time

The user can specify the number of trace windows in the
Setup menu.

6.12 Option submenu

There are five CS-PROLOG system state variables, called
options, that have effect on the execution of goal. In the
Option submenu you can change the settings of these
variables, save the current settings to a disk-file, or
load settings from a previously saved file.

Multilogic Computing Ltd Page 64

 The options, and their possible values are the
following (the defaults are underlined):

Sound Off No sound generated

 On Sound generated
after several functions.

Error on undefined Off If a predicate is
called and there is no
definition for it then the
predicate fails.

 On In this case an
'undefined_predicate' error is
signalled.

Tail recursion opt. Off No tail recursion
optimization is performed.

 On Tail recursion
optimization is performed
during the execution.

Printer output Off No default output on
the printer.

 Trace Trace outputs are
printed.

 Dialog All input/output in
dialog windows are printed.

 All All input/output are
printed.

Acknowledge On Hold output if a
window screen is full. The
execution continues when a key
is pressed.

 Off Continuous output.

6.13 Setup submenu

In the Setup submenu you can change the values of some
state variables of the CS-PROLOG environment. So these
settings have no effect on the execution only on the
environment.

6.13.1 External editor

You have the possibility to modify a source file with
your favorite text editor without leaving the CS-PROLOG

Multilogic Computing Ltd Page 65

environment (see the Edit external item in the Edit
submenu). You have to specify here the editor you want to
use. It can be any executable file name. When you select
the Edit external function, the environment will issue the
following operating system call:

Editor filename

where Editor is the name you entered in the 'Setup-
External editor' function, and filename is the source file
name.

6.13.2 Source pattern

The source pattern is used in source file-browsers to
select the files to display (in Load file and Load text
functions). The pattern can contain the wildcard
characters '*' and '?'. These characters have the same
meaning as in the operating system. E.g. the pattern

hu*.??

means all file names that begin with 'hu' and have two
character extension.

If the source pattern has the form:

*.EXT

where 'EXT' is an extension not containing wildcard
characters, this extension is used as default extension in
all places where source files are specified. So in this
case you do not have to give the extension if it is the
same as the default. The default extension is used in
project files, in Load file, New file, Save file, Rename
file, and Load text functions.

The default value for the source pattern is

*.pro

so the default 'default extension' is 'pro'.

6.13.3 Project pattern

Project pattern is the same for the project files as
the source pattern is for the source files. The project
pattern and the default project extension (if any) is used
in Load project and Save project functions. The default
value for the project pattern is

*.prj

Multilogic Computing Ltd Page 66

6.13.4 Edit window size

The clause editor window is used when you are entering
or modifying a clause or the scrap buffer. (See the Edit
submenu, Enter, Modify, Edit scrap items.) You can set the
row size of the clause editor window using this Setup menu
item. Enter simply a number between 3 and 18. The default
value is 8.

6.13.5 Trace windows

 The trace of different processors can be directed into
different windows (see the description of the interactive
trace). You can specify here the processors to be traced
in different windows, using a browser. Maximum 8 windows
can be used so max. 8 processors can be selected in this
browser. Use the 'space' key to select or deselect a
processor. The processors are represented by their serial
number. The default state is to trace in one window the
processor number 1.

6.13.6 Deadlock detection

This command has effect only when you are debugging a
parallel program. If the deadlock detection is set to On
then when a deadlock situation occurs, while you are
debugging a parallel program, a special window opens and
informs you about the current state of the scheduler's
internal lists. Pressing a key you can continue the
debugging. (Backtrack begins from the deadlocked point.)
By default the deadlock detection is set to Off so no
information appears in a deadlock situation.

6.13.7 Colors

You can set the colors of the windows used by the
environment. The following window groups can be set
separately:

Menus The menu and browser windows. You have
to set the color of the highlight as
well.

Editors The editor windows, all windows where a
text is entered.

Multilogic Computing Ltd Page 67

Observer The window under the main menu where the
clauses are displayed. You have to
specify the color of the highlight as
well.

Error The window for error messages.

System dialog The window which is opened by default
before executing a goal-sequence. (This
window has the PROLOG name
"system dialog window").

When you have selected one of the window types above a
sample window appears in the middle of the screen. You can
change the background color pressing the Up or Down keys
and the foreground color pressing the Right or Left keys.
Press Enter to set the shown colors. When setting the
colors of the menu or observer windows you have to select
a color for the highlight as well.

After setting all colors you wanted to change return to
the main menu pressing Esc.

6.13.8 Helpkey

You can change the default setting of the helpkey
(Alt-h) to any other key. Just press the new help key. The
system will ask for the confirmation of the change.
Several keys have special meaning for the system (e.g.
F1-F6, cursor keys, Enter, etc.), it is not advised to
overload these keys, e.g. to use the F1 key as the help
key.

6.13.9 Save setup

If you have changed several setup parameters and you
want to make these changes permanent you have to save the
actual setup using this menu item. The system creates a
file named:

csprolog.ini

containing the setup parameters. When the CS-PROLOG
environment is called it looks for a file 'csprolog.ini'
in the current working directory. If this file is found
the setup parameters are set to values stored in the file.
You can reset the default parameters deleting the file
from the disk. Obviously in different directories there
can be different 'csprolog.ini' files.

Multilogic Computing Ltd Page 68

6.14 Help submenu

In this submenu you find three items. Choosing the Help
item you get some basic information. With Content item you
can list the titles of the help texts available. In the
Manual item you have to enter a help text number and the
system displays the help texts from the chosen one.

On the top of every help screen you see a headline
containing the title, the total number of help screens and
the serial number of the actual one. You can switch
between help screens using the Enter key or PgDn key to
get the next, PgUp key to get the previous and ESC key to
finish. Pressing Enter on the last page finishes the help
utility too.

Multilogic Computing Ltd Page 69

7. Examples

7.1 Bank Robbery Problem

File name "BANK.PRO".

This program is the basic CS-PROLOG demonstration
program. In the multiprocessor environment the fifth
arguments in the "new" built-in predicates are set to 1
and 2 denoting that dick is running on the 1st processor
and jim is running on the 2nd processor.

To run the program type:

problem.

7.2 Maze Problem

File name "MAZEPGR.PRO".

This program finds the path in a maze from the starting
point to the exit point. The program runs on four
processors each representing the north, east, south, west
directions respectively. The work of the processors are
shown in the screen by four figures representing the same
maze but in different states. Red paths show the current
search path of the given processor.

To run the program type:

problem.

7.3 Eight Queens Problem

File name "QQ8GR.PRO".

This program represents the CS-PROLOG solution for the
8-queens problem. It can run on any number of processors
but exploits maximum 8 processors.

To run the program type:

problem.

or

problem(N).

In the first case all processors (up to 8) of your
system will be used to solve the problem. In the second

Multilogic Computing Ltd Page 70

case the first N processors of your system will be used to
solve the problem. The solutions are displayed by graphics
on eight different chess-boards. The solution may be time
consuming. After solving the problem the running time of
the program is written in seconds in a red window. The
execution time of the problem for different numbers of
processors can be compared by using different N
parameters.

7.4 Pub Problem

File name "PUBCONS.PRO".

The short description of the problem is the following.
There is a bar with two entrances. In each 5 time units a
customer is coming through the first door and in each 3
time units a client is coming through the second door. In
total there are 3 customers coming through the first and 5
customers coming through the second door. The barman
(mixer) needs 4 time units to serve a customer. After
receiving their drinks customers spend 15 time units in
the bar.

To run the program type:

problem.

As an output the programs lists on the screen the
termination time of the processes.

7.5 Parser Problem With Multiple Solution

There are seven different solutions elaborated for the
same parser problem. The description of the problem and
the explanation of the different solution algorithms can
be found in a companion file in printable format:

parexer.doc

The grammar of a natural language parser is defined by
the following rules:

(1) sentence -> noun_phrase, verb_phrase

(2) noun_phrase -> determiner, noun

(3) verb_phrase -> verb, noun_phrase

(4) verb_phrase -> verb

The task is to decide about a series of list of words
if they construct sentences in the given grammar or not.

Multilogic Computing Ltd Page 71

The sequential algorithm is realized by the

lparsesw.pro

program.

To run the program type:

problem(N,D).

where N is the number of word_lists to be processed
(maximum 20) and D represents the execution time of the
nodes of the Parse Tree. D can be any positive integer.
The Parse Tree is drawn on the screen. The process of
parsing is shown on the screen by recolouring those nodes
of the Parse Tree that are currently activated. In a
Result window the result of parsing each word_list is
displayed. After solving the problem the running time of
the program is written in seconds in a red window. By
modifying the value of D the execution time can be
influenced.

The parallel algorithm based on the processor farm
concept is realized by the

lparspfw.pro

program.

To run the program type:

problem(N,D,P).

where N is the number of word_lists to be processed
(maximum 20) and D represents the execution time of the
nodes of the Parse Tree. D can be any positive integer. P
is the number of processors to be used to solve the
problem (maximum 4). A Worker process is allocated to each
processor and a Worker window is displayed on the screen
for each Worker process. Whenever a Worker process is
activated by a message the corresponding Worker window is
recoloured by the color of the given processor. After
finishing the program execution each Worker window
contains a number representing the number of nodes of the
Parse Tree executed by the corresponding Worker process.
The running time is also displayed as mentioned above.

The next solution can be found in

lparipfw.pro

which is an improved version of the previous program where
a simple processor manager is used by the master process
to balance the work of the processors.

Multilogic Computing Ltd Page 72

To run the program type:

problem(N,D,P).

A static AND-parallel solution can be achieved by the

lparsspw.pro

program.

To run the program type:

problem(N,D).

Again the whole Parse Tree is drawn on the screen like
in case of lparsesw.pro. The process of parsing is shown
on the screen by recolouring those nodes of the Parse Tree
that are currently activated. Nodes executed on the same
processor are recoloured with the same color. Notice that
the noun_phrase and verb_phrase processes are executed on
different processors. After finishing the program
execution the noun_phrase and verb_phrase windows contain
a number representing the number of nodes of the Parse
Tree executed by the corresponding processors. The running
time is also displayed as mentioned above.

A pipeline algorithm is realized by the

lparspip.pro

program.

See explanation in parexer.doc file.

To run the program type:

problem(N,D).

This program also illustrates how to organize the
program to save memory by backtracking after the
processing of each word_list. Backtracking empties the
stacks of Prolog making it possible to execute long
programs too.

An improved pipeline algorithm is realized by the

lparspi2.pro

program.

See explanation in parexer.doc file.

To run the program type:

problem(N,D).

Multilogic Computing Ltd Page 73

8. External C Interface

The CS-PROLOG system enables you to write your own
built-in predicates in C language. A special C function
set is supplied for parameter handling, memory allocation,
choice point handling (for nondeterministic built_in
predicates). The C interface function set is slightly
different for the interpreter and the compiler in some
cases. The following description will warn you when there
is an incompatibility between them. The recommended
compiler to be used is the 3L Parallel C compiler V 2.0.
For the multitransputer environment see also the
"Installation" chapter.

8.1 Global Items

The following global constant and structures are
defined in the "INTERFAC.INC" header file.

Predefined constants used in interface functions

nil
true
false

Error numbers that can be returned by a built-in
predicate

non_atom_argument
non_numeric_argument
memory_full
cannot_open_file
cannot_close_file
no_more_disk_space
syntax_error
wrong_arg_no
floating_point_error
non_opened_file
non_integer_argument
non_implemented
non_positive_argument
io_error
illegal_number
illegal_list

Flags representing different kinds of data in CS-PROLOG
are:

t_empty
t_float
t_atom
t_fix
t_nil
t_struct
t_list

Multilogic Computing Ltd Page 74

Basic data type for the internal data representation of
CS-PROLOG is

csp_cell

For the compiler an additional data type is used

extb_choice_point

Two global cells representing the internal form of the
empty list and unbound variable

csp_cell nil_cell;
csp_cell empty_cell;

The "empty_cell" can be used only to construct lists
and structures containing unbound variables. Never use
"empty_cell" as a parameter of "unify_cell". If you want
to unify two different empty variables then build them
into a structure or list and retrieve from this structure
or list the cell representing the variables and then unify
them.

8.2 The C Interface Function Set

int get_nth_arg(int arg_no, csp_cell *cell);

"cell" is the "arg_no"-th argument of the called
built-in predicate. If "arg_no" is zero or greater then
the actual number of arguments then "wrong_arg_no" is
returned otherwise "true" is returned.

int put_nth_arg(int arg_no, csp_cell cell);

The "arg_no"-th argument of the called built-in
predicate is unified with the "cell". It returns "true" is
the unification was successful, "false" if it was not. Any
other return number means error (memory full). If the
unification is "false" then the variable bindings are not
undone that means that if this function call fails then
the built in predicate must return "false" as well.

int get_cell_type(csp_cell cell);

Returns the type of "cell":

t_empty unbound variable
t_float float number
t_atom atom (symbol)
t_fix fix number
t_nil empty list
t_struct functional expression
t_list list (non empty)

Multilogic Computing Ltd Page 75

int get_int_cell(csp_cell cell, int *value);

If the type of "cell" is not "t_fix" then returns
"false" otherwise "true". The number represented by "cell"
is assigned to "value".

int get_float_cell(csp_cell cell, double *value);

If the type of "cell" is not "t_float" then returns
"false" otherwise "true". The float number represented by
"cell" is assigned to "value".

int get_atom_cell(csp_cell cell, char **value);

If the type of "cell" is not "t_atom" then returns
"false" otherwise "true". The string represented by "cell"
is assigned to "value". It is very important that "value"
is the pointer which points to the char sequence in
CS-PROLOG memory tables. That means that the user must not
change the content of this string! (You can only read this
string.)

int get_list_head(csp_cell list, csp_cell *head);

If the type of "cell" is not "t_list" then returns
"false" otherwise "true". The head of the list represented
by "cell" is assigned to "head".

int get_list_tail(csp_cell list, csp_cell *tail);

If the type of "cell" is not "t_list" then returns
"false" otherwise "true". The tail of the list represented
by "cell" is assigned to "tail".

int get_file_cell(csp_cell f_cell, FILE **file_p);

If the type of "f_cell" is not "t_atom" then returns
"false". Furthermore if "f_cell" does not represent a
CS-PROLOG file identifier then returns "false". Otherwise
it returns in its second argument a pointer to that FILE
structure (defined in the "stdio.h" header file) which
describes the named file.

int get_struct_functor(csp_cell s_cell,
 csp_cell *name,
 int *arity);

If the type of "cell" is not "t_struct" then returns
"false" otherwise "true". The name and arity (number of
arguments) of the functional expression represented by
"cell" is assigned to "name" and "arity".

int get_struct_arg(csp_cell s_cell, int arg_no,
 csp_cell *arg);

If the type of "cell" is not "t_struct" then returns
"false". If "arg_no" is greater then the actual number of
arguments then returns "wrong_arg_no" otherwise "true".
The "arg_no"-th argument of the functional expression

Multilogic Computing Ltd Page 76

represented by "cell" is assigned to "arg". If "arg_no" is
zero "arg" is the name of "cell".

int make_int_cell(int value, csp_cell *cell);

"cell" is made to represent a fix number of value
"value". Returns "true".

int make_float_cell(double value, csp_cell *cell);

"cell" is made to represent a float number of value
"value". Returns "true" or a value meaning memory_full.

int make_atom_cell(char *value, csp_cell *cell);

"cell" is made to represent an atom value "value".
Returns "true" or a value meaning memory_full.

int make_list_cell(csp_cell head, csp_cell tail,
 csp_cell *list);

"cell" is made to represent a list with head "head" and
tail "tail". Returns "true" or a value meaning
memory_full.

int make_struct_cell(csp_cell name, int arity,
 csp_cell args[],
 csp_cell *s_cell);

"cell" is made to represent a functional expression
with name "name", arity "arity" and arguments "args".
Returns "true" or a value meaning memory_full.

int unify_cell(csp_cell cell1, csp_cell cell2);

"cell1" is unified with the "cell2". It returns "true"
is the unification was successful, "false" if it was not.
Any other return number means error (memory full). If the
unification is "false" then the variable bindings are not
undone that means that if this function call fails then
the built in predicate must return "false" as well.

int try_unify_cell(csp_cell cell1,
 csp_cell cell2);

"cell1" is unified with the "cell2". It returns "true"
is the unification was successful, "false" if it was not.
Any other return number means error (memory full). If the
unification is "false" then the variable bindings are
undone that means that if this function call fails then
the built in predicate can continue and can succeed.

For interpreter:

int make_trail_note(int (*f)(), csp_cell note);

This function has to be used by "backtrackable"
built-in predicates to remove the effect of the predicate
while backtracking. If the backtrack reaches the point of
calling this predicate the function "f" is called with

Multilogic Computing Ltd Page 77

argument "note". If a csp_cell is not enough to store the
information needed to undo the global effects then an
amount of memory has to be allocated using function
"csp_alloc" and the pointer returned by it can be stored
in a csp_cell. Don't use the "long" returned by
"csp_alloc" as argument in "make_trail_note" and "f"
because the size of "csp_cell" is not always equal to the
size of "long" (better assign the "long" value to a
csp_cell and vice versa).

For compiler:

The above function in the compiler version is replaced
a pair of functions. The first of them serves for
preparing the trail entry, the other one putting the trail
entry into the trail stack.

int trail_block_register(int size, long cell_mask,
 long proc_mask,
 int (*f)());

This function prepares the trail array and it has to be
called only once for every backtrackable user defined
built-in predicate as a kind of initialization. The trail
array is an array of csp_cells (max 32). Among these
csp_cells you may want to store C pointers too. In this
case pointers have to be appear as long unsigned numbers.
You have to specify

size
size of the trail array (the number of
csp_cells)

cell_mask
Each bit of the mask corresponds to a csp_cell
in the trail entry. (The least significant bit
to the 0th entry). If the Ith entry is a C
pointer then the Ith bit has to be 0 otherwise
1.

proc_mask
reserved (0).

f
the address of the function which will be called
on backtracking by the system. The system
supplies the address of the trail array as its
single argument.

This function returns an integer number which
identifies the trail array to be used later in a
"make_trail_note" call.

int make_trail_note(int tr_entry_id,
 csp_cell *tr_array);

This function has to be called every time when you want
make a trail note. The first argument is the trail array
identifier got from the "trail_block_register" call. The
second argument is the address of the trail array.

Multilogic Computing Ltd Page 78

long csp_alloc(unsigned len);

This functions allocates a piece of memory of size
"len" and returns a pointer (of type "long") which cannot
be used directly to address the memory only passing as an
argument to "csp_addr". Value "nil" means memory full.

char huge *csp_addr(long p);

This function returns the absolute address of the
memory allocated by "csp_alloc" and represented by pointer
"p".

int csp_rel(long p, unsigned len);

This function releases the memory allocated by
"csp_alloc".

For interpreter:

int create_choice();

Used in nondeterministic built-in procedures it creates
the possibility for successive alternatives of the
procedure. This call has to precede any function creating
structure or list and any "unify_cell" call. It must be
followed by a "set_choice" or a "destroy_choice" function
call before returning. "create_choice" returns "true" or
an error (memory full).

For compiler:

int create_choice(int argno,
 extb_choice_point *extb_retry);

The effect of this function is similar to the
interpreter's one only the parameter passing differs. The
first argument is the arity of your built-in predicate.
The second argument has to be the address of a
"extb_choice_point" type structure variable. On return
"create_choice" fills this structure. In the compiler's
case the same C function is activated at first occasion as
at the subsequent choices. So the user has provide at
least one extra argument in order to be able to
differentiate between these two cases. The extra arguments
also serve for storing the information to be passed from
one activation to the next one. On PROLOG level the extra
arguments have to be initialized with definite values that
the first activation will recognize.

For interpreter:

int set_choice(int (* cont_func)(), csp_cell u);

When the backtrack reaches this point the
interpretation continues with calling "cont_func" with
argument "u". If a csp_cell is not enough to store the
information needed to call the next alternative then an
amount of memory has to be allocated using the function
"csp_alloc" and the pointer returned by it can be stored

Multilogic Computing Ltd Page 79

in a csp_cell. Don't use the "long" returned by
"csp_alloc" as argument in "set_choice" and "cont_func"
because the size of "csp_cell" is not always equal to the
size of "long". The call of "cont_func" must terminate
with calling "set_choice" if there are more alternatives
or with calling "destroy_choice" if there are not.
"set_choice" returns "true" or an error (memory full).

For compiler:

int set_choice_arg(int argnum, csp_cell cell);

Rewrites the "argnum"-th argument of the built-in
predicate with "cell" on the current choice point.

int destroy_choice();

When a nondeterministic predicate doesn't want to
succeed any more it has to call "destroy_choice" and
return "fail". This function always returns "fail".

Never store CS-PROLOG data (csp_cells returned by
interface functions) to global variables since they can be
garbage collected. So any information for communication
between built-in predicates has to be stored in memory
allocated by "csp_alloc" except that the arguments and
parts of arguments of nondeterministic predicates can be
stored between successive calls.

Multilogic Computing Ltd Page 80

9. Installation

9.1 Hardware & Software Requirements

The multitransputer version of CS-PROLOG system is
currently implemented only on transputer network connected
to an IBM XT\AT as a host machine. You need:

1. IBM PC/AT (or compatible) as host, CGA or EGA,
1.2M floppy drive, hard disk, 640K memory,
DOS 3.3 or later

2. Transputer board(s) (T414 or T800 at least
1 Mbyte per transputer)

3. 3L Parallel C compiler, linker, configurer

9.2 Interpreter System Installation

The distribution diskettes of CS-PROLOG interpreter
system has the following structure:

DISK #1

root directory:
common system files for both T414 and T800
transputers

T414 directory:
T414 specific system files

T800 directory:
T800 specific system files

EX directory:
CS-PROLOG examples

CONFIG directory:
hardware description samples for
installation

DISK #2

root directory:

T414 directory:
T414 specific system files for C
interface option of CS-PROLOG

EX directory:
CS-PROLOG example for C interface

Multilogic Computing Ltd Page 81

T800 directory:
T800 specific system files for C
interface option of CS-PROLOG

EX directory:
CS-PROLOG example for C interface

The algorithm of installation is the following:

1. Make sure that you have enough space on your
hard disk for the CS-PROLOG system : 2 Mbytes
and cca 300K per transputers.

2. Create the directory called "csprolog" for the
CS-PROLOG system on your default hard disk using
the following DOS commands :

md \csprolog
cd \csprolog

3. Copy the root directory of the DISK #1 to the
"csprolog" directory.

copy a:*.*

4. If you have T414 transputers copy the T414
directory of DISK #1 to the "csprolog"
directory.

copy a:\t414*.*

5. If you have T800 transputers copy the T800
directory of DISK #1 to the "csprolog"
directory.

copy a:\t800*.*

6. Create the hardware description file of your
transputer configuration using a text editor.
The "config" directory of the DISK #1 contains
two possible description files for either 2 or 4
transputer connection:

- mway2.cfg
- mway4.cfg

It would be useful to simply rewrite one of them
according to your exact configuration. The
hardware description file should contain:

- the identifiers of processors

- the existing physical wires between
the processor links

E.g.

<edit> myconfig.cfg

Multilogic Computing Ltd Page 82

7. Having your own description file call "cspbuild"
batch in order to generate your own application.

T414 case :

cspbuild /T4 myconfig.cfg csprolog.app

T800 case :

cspbuild /T8 myconfig.cfg csprolog.app

The list of available options of "cspbuild"
batch can be obtained calling it without
parameters.

cspbuild

Hint! There are some machines where the "config"
program can not terminate properly but the
generated output file is correct. In that case
you might stop the configurer after a couple of
minutes by pressing CTRL-C.

If you are planning to use the C interface
option of CS-PROLOG system later you have to
rebuild your application in a slightly different
manner (see Using C interface).

8. If this generation was successful your
application is ready to use. It is advisable to
create another working directory for your prolog
programs. In that case you should either insert
the "csprolog" directory into the PATH list or
copy the "csp.bat" file into the working
directory. Create your working directory and
enter into it.

E.g.

md \work
cd \work
copy \csprolog\csp.bat

9. Once you are in the working directory copy the
CS-PROLOG examples from the "ex" directory of
DISK #1 into the working directory:

copy a:\ex*.*

and then invoke the CS-PROLOG system typing

csp

Now you can run any example CS-PROLOG program.

Multilogic Computing Ltd Page 83

9.3 Installation Of The C Interface In Interpreter

The CS-PROLOG system allows the user to write his or
her own built-in predicates and append them to the
standard built-in predicate set of CS-PROLOG. The full
description of C interface routines can be found in the
chapter "External C Interface". The multitransputer
considerations are the following:

The extension routines have to be written in 3L
Parallel C but they MUST NOT use the parallel features of
3L Parallel C.

The user should keep in mind that his or her extension
will appear on every transputer but they are absolutely
independent. So there is no way to communicate through
global variables neither.

The algorithm of generating the extended application is
the following. In the current example we are going to
assume a T414 transputer so the specific file names and
extension often refer to the T414 transputer. If you are
using a T800 transputer change every "4" character to "8".

The first phase of the algorithm should be executed
only once for prepare the creating of a user extended
CS-PROLOG application.

1. Enter into the "csprolog" directory

cd \csprolog

2. If you have T414 transputers copy the following
files from DISK #2 to the "csprolog" directory.

copy a:\t414*.*

3. If you have T800 transputers copy the following
files from DISK #2 to the "csprolog" directory.

copy a:\t800*.*

4. Rerun the "cspbuild" batch by adding a further
option to its command line. This option will
cause the necessary files not to be deleted
during the generation process. These files serve
as input to the configuration of the user
extended application.

cspbuild /T4 /N /L\csprolog
 myconfig.cfg
 dummy.app

Multilogic Computing Ltd Page 84

5. The previous step has created the necessary
configurator's input file for the forthcoming
configuration process in the "\csprolog"
directory. Copy the following file into your
working directory.

copy \csprolog\$cspb$.cfg
 \work\my_ext.cfg

6. Edit "my_ext.cfg" using a text editor.

7. Change every occurrence of the

"\csprolog\csprolog.b4"

pattern into

"\work\my_ext.b4"

using your text editor's replace facility.
Hopefully you will find as many such patterns as
many transputers you have. Note that in the
current example a T414 transputer set is
assumed. If you have T800 transputer both
pattern must end with ".b8".

8. Quit your text editor.

Now your system is ready to create the user's extended
application of CS-PROLOG. The second phase of the creation
process should be executed whenever you want to modify
something inside one of your own built-in predicates.

1. Create or modify your extension routines using a
text editor.

E.g.

my_ext.c

From "my_ext.c" collect the function names that
are going to be used as a built-in predicates
into a file

my-ext.nam

2. Compile your C source using the 3L Parallel C
compiler.

t4c /Fomy_ext.bi4 my_ext.c

Multilogic Computing Ltd Page 85

Your "my_ext.c" necessarily refers to the
include file "interfac.inc". It resides
currently in "\csprolog" directory. You can
access it by one of the following ways:

copy \csprolog\interfac.inc

or using the following include directive in your
C program:

#include "\csprolog\interfac.inc"

3. Run the "cspface" program

afserver -:b \csprolog\cspface.b4
 \csprolog\csprolpp.btp
 my_ext.btp
 my_ext.nam -:o 1

4. Compile the generated "npuser.c" using the 3L
Parallel C compiler.

t4c /Fonpuser.bi4 npuser.c

5. Create the appropriate link file using a text
editor. In the current example the link file

"my_ext.lt4"

should look like this:

my_ext.bi4 (user's extension compiled
binary file)

npuser.bi4
\csprolog\csprolog.li4

(CS-PROLOG interpreter's
library)

\tc2v0\sacrtlt4.bin
(3L Parallel C library)

\tc2v0\taskharn.t4
(3L Parallel C library)

6. Link all binary files into a new task using 3L

Parallel C linker

linkt @my_ext.lt4,my_ext.b4

7. Configure the previously linked task and some
standard system task into a new application
containing the user's built-in predicates using
3L Parallel C configurator. Assume that the
input file of the configurator "my_ext.cfg" have
been created (see above).

config my_ext.cfg my_ext.app

Multilogic Computing Ltd Page 86

8. Run your extended application by typing the
following lines at the DOS prompt or by
including them into an own batch file:

@echo off
\csprolog\cspcanc
\csprolog\cspmsup \csprolog\cspmsup.bds
afserver -:b my_ext.app my_ext.btp
 %1 %2 %3 %4 %5 >csprolog.his

9.4 Compiler System Installation

The distribution diskettes of CS-PROLOG compiler system
has the following structure:

DISK #1

root directory:
common files for both T414 and T800
transputers of runtime system

T414 directory:
T414 specific system files

T800 directory:
T800 specific system files

EX directory:
CS-PROLOG examples

CONFIG directory:
hardware description samples for
installation

DISK #2

root directory:
The compiler itself to be run under DOS

The algorithm of installation is the following:

1. Make sure that you have enough space on your
hard disk for the CS-PROLOG system : 2 Mbytes
and cca 300K per transputers.

2. Create the directory called "cscomp" for the
CS-PROLOG system on your default hard disk using
the following DOS commands :

md \cscomp
cd \cscomp

3. Copy the root directory of the DISK #1 to the
"cscomp" directory.

copy a:*.*

Multilogic Computing Ltd Page 87

4. If you have T414 transputers copy the T414
directory of DISK #1 to the "cscomp" directory.

copy a:\t414*.*

5. If you have T800 transputers copy the T800
directory of DISK #1 to the "cscomp" directory.

copy a:\t800*.*

6. Create the hardware description file of your
transputer configuration using a text editor.
The "config" directory of the DISK #1 contains
two possible description files for either 2 or 4
transputer connection:

- mway2.cfg
- mway4.cfg

It would be useful to simply rewrite one of them
according to your exact configuration. The
hardware description file should contain:

- the identifiers of processors

- the existing physical wires between
the processor links

E.g.

<edit> myconfig.cfg

7. Having your own description file call "cspbuild"
batch in order to generate your own application.

T414 case :

cspbuild /T4 myconfig.cfg csprun.app

T800 case :

cspbuild /T8 myconfig.cfg csprun.app

The list of available options of "cspbuild"
batch can be obtained calling it without
parameters.

cspbuild

Multilogic Computing Ltd Page 88

8. If this generation was successful your
application is ready to use. It is advisable to
create another working directory for your prolog
programs. In that case you should either insert
the "cscomp" directory into the PATH list or
copy the "csp.bat" file into the working
directory. Create your working directory and
enter into it.

E.g.

md \work
cd \work
copy \cscomp\csp.bat

9. Before the first compilation install the
CS-PROLOG compiler and the delivered examples
executing the following:

Insert Disk #1 in drive A:

copy a:\ex*.*

Insert Disk #2 in drive A:

copy a:*.*

9.5 The CS-PROLOG Compiler

The compiler consists of two files:

- MCSCOMP.EXE the executable file, the compiler
itself

- CSPCOMP.BIN internal data file for the compiler

The "CSPCOMP.BIN" is searched always in the same
directory where the compiler is, so copying the compiler
to a directory (not necessarily the working directory)
copy the ".BIN" file as well.

The compiler generates code in an object format that is
loaded dynamically by the runtime system so no linkage is
necessary after compilation. The invocation of the
compiler has the following form:

MCSCOMP pro_name [options ...]

The "pro_name" is the name of the CS-PROLOG program to
be compiled without extension since ".PRO" extension is
assumed. The generated code is stored in the file
"pro_name.LDF" if the compilation was successful. The
generated code contains only those built-in predicates
that are called statically in the program (unless you
specify the "-blt" option). The options begin with "-".

Multilogic Computing Ltd Page 89

The following options are available:

-noblt
If there are no such built-in predicate which
would be called as metacalls or called by
dynamic clauses added dynamically this option
may be given. It ensures that only those
CS-PROLOG built-in predicates are included into
the generated code which are explicitly used.

-l
For efficiency purposes in the generated code
two byte addressing is used. If the static code
length exceeds 32K four byte addressing is
needed. This can be forced by "-l" option. If a
large program is compiled without this option
and the code area exceeds the limit an error
message is sent then the program has to be
recompiled with "-l".

-opt:filename
The options of the CS-PROLOG interpreter or
converter that have meaning for the compiler
version (sound, error_on_undefined,
tail_recursion_opt, printer, acknowledge, (see
the interpreter manual)) can be set with this
option. The "filename" has to be the name of a
file produced by the interpreter environment
"OPTION SAVE" facility.

The error messages of the compiler. The syntax errors
are printed out in the following format:

filename(line) : error err_no : err_text

Here "filename" is the file name which is compiled,
"line" is the line number where the error occurred,
"err_no" is the number of the error, "err_text" is the
error text. The semantic errors (e.g. simultaneously
static and dynamic clause) have the same form, only the
line number is omitted and the erroneous identifier is
printed out.

There are several fatal errors which terminate the
compilation: memory full, missing file etc. In case of a
fatal error a message is printed out and the compiler
exits without code generation.

Multilogic Computing Ltd Page 90

9.6 The CS-PROLOG Runtime System

The CS-PROLOG compiler generates a code file that is
loaded dynamically by the runtime system. This program
contains the procedures needed by the generated code (e.g.
the built-in predicates). The invocation of this program
is

CSP filename [options]

at the DOS prompt.

 Note that during the multitransputer execution a
special host support program must reside in the host PC's
memory. In the case of normal termination the system
automatically removes the host support program. However in
an abnormal termination case the support program may still
remain in the host PC's memory. You can remove it manually
typing

CANCEL

at the DOS prompt.

The main goal of the program, i.e. the clause that is
called in the beginning of the execution, is the very
first clause in the source program. It has to be a clause
without arguments (with zero arity). If a program uses the
simulation extension predicates of CS-PROLOG, it is not
necessary to use the "run" predicate to initialize the
execution (as in the interpreter version) because the
compiler runtime system begins its execution creating a
CS-PROLOG process whose goal is the main goal of the
source program.

Multilogic Computing Ltd Page 91

There are several options for the runtime system. They
can be given on the command line of the "CSP" batch:

medtables

mintables
The memory for the main data stacks (HEAP,
STACK, TRAIL) is allocated at the beginning of
the execution and cannot be extended (because of
efficiency considerations). So the system has to
decide what amount of memory to allocate for
these stacks and the rest is available for the
dynamic clauses, floats, symbols, etc., (these
tables are extendible). If the total size of
available memory is M bytes by default the
system allocates 70% of M for the main stacks.
With "medtables" option set this proportion is
50%, with "mintables" it is 30%. So if a program
constructs many prolog terms and the execution
is deeply recoursive the default memory sharing
is good. But if the program creates many dynamic
clauses, float numbers new global symbols, it is
better set this option to avoid a MEMORY_FULL
error.

nogc
By default the runtime system performs garbage
collection if one of its tables runs out of free
space. With this option the garbage collection
can be disabled.

gcstat
If garbage collection is performed with "gcstat"
option set a summary information is printed out
to the screen telling the number of collected
and freed items in the tables of the runtime
system. It damages the current state of the
screen which is not restored! (The output can be
redirected to a file.)

ega
This option should be set if CS-PROLOG is run on
a PC with EGA card or compatible the window
scrolling is done 15 times faster. Setting this
option on a CGA card causes "snowing" on screen.

9.7 Installation Of The C Interface In Compiler

The current version of the CS-PROLOG compiler in the
multitransputer environment does not provide the C
interface possibility. Future versions will contain it.

Multilogic Computing Ltd Page 92

10. Index

! cut .. 19
!(X) cut ancestor .. 19
* .. 22
+ .. 22
/ ... 22
< .. 23
<= ... 23
=:= .. 23
=\= .. 23
> .. 23
>= ... 23
@< .. 23
@<= .. 23
@> .. 23
@>= .. 23
^ .. 22

A

abort .. 34
abs ... 22
acos ... 22
active_process .. 46
add_clause ... 16
add_operator .. 32
advance ... 46
ancestor ... 19
ancestorable_call ... 19
append_file ... 14
asin.. 22
assert_clause .. 16
assign_global_key .. 27
assign_key ... 27
assign_text... 27
atan ... 22

C

change_color ... 28
char_of .. 24
clause_count .. 16
clear_screen ... 30
close_file ... 14
close_level ... 30
close_window .. 28
code_of .. 24
color_mode .. 33
comp ... 17
concat .. 23
copy_screen ... 30
cos ... 22
cpu_time .. 33
create_choice ... 78
create_file .. 14
create_window ... 27
csp_addr .. 78
csp_alloc.. 78
csp_rel ... 78

Multilogic Computing Ltd Page 93

D

datetime ... 33
decomp .. 18
delete_clause ... 16
delete_partition .. 16
delete_window ... 27
destroy_choice ... 79
display .. 13

E

egalf .. 34
eq .. 19
exp .. 22

F

fail ... 19
find_clause .. 16
floor... 22

G

garbage_collection ... 35
get ... 15
get_atom_cell .. 75
get_cell_type.. 74
get_clause .. 16
get_file_cell ... 75
get_float_cell ... 75
get_input ... 14
get_int_cell .. 75
get_list_head ... 75
get_list_tail .. 75
get_nth_arg ... 74
get_operator... 32
get_output.. 14
get_screen.. 29
get_struct_arg .. 75
get_struct_functor .. 75
get_value ... 17
get_window ... 27
get0 ... 15

H

hor_menu .. 29

I

incr_value .. 17
incr_value_b .. 17
is ... 21
is_atom ... 20
is_file .. 20
is_float .. 20
is_ground .. 20
is_int ... 20
is_list ... 20
is_num .. 19
is_value ... 20
is_var .. 20
is_window ... 20

Multilogic Computing Ltd Page 94

K

key_accept ... 33
key_pressed ... 33

L

list_length ... 21
load_file .. 18
load_system ... 30
local_add_clause .. 18
local_assert_clause .. 18
local_clause_count ... 18
local_delete_clause .. 18
local_delete_partition .. 18
local_find_clause ... 18
local_get_clause... 18
local_get_value .. 18
local_incr_value .. 18
local_incr_value_b ... 18
local_set_value .. 18
local_set_value_b... 18
local_suppress_clause .. 18
local_suppress_partition .. 18
local_time .. 47
log ... 22

M

make_atom_cell ... 76
make_float_cell ... 76
make_ground ... 34
make_int_cell .. 76
make_list_cell.. 76
make_struct_cell .. 76
make_trail_note ... 76, 77
max_processor ... 47
message_arrived... 46
mod ... 22

N

new.. 44
new_unb ... 45
nl ... 12

O

open_file.. 13
open_level ... 30
open_window .. 28
own_processor ... 47

P

p_make_ground ... 47
pause ... 33
port_byte ... 35
put_nth_arg ... 74

R

random .. 35
read ... 11
read_from_string ... 14
read_from_string_symb ... 15

Multilogic Computing Ltd Page 95

read_record .. 15
read_symb ... 11
read_token ... 11
read_window ... 28
read_window_text.. 28

S

save_partition ... 18
save_system ... 30
scroll_window ... 28
search_pattern ... 24
send ... 45
send_unb ... 45
set_choice .. 78
set_choice_arg ... 79
set_input .. 14
set_local_time .. 47
set_option .. 34
set_output .. 14
set_screen .. 29
set_value.. 17
set_value_b .. 17
sin ... 22
sound ... 33
sqrt .. 22
string_length ... 23
substring .. 23
succeed .. 19
suppress_clause ... 17
suppress_partition .. 17
system ... 35

T

tan ... 22
terminate_system ... 47
termination_time ... 46
trunc .. 22
try_unify_cell .. 76
type_of... 21

U

unify_cell... 76

V

ver_menu... 29

W

wait_for ... 46
wait_for_dnd ... 46
wait_for_unb ... 46
write .. 12
write_inside ... 13
write_inside_to_string ... 15
write_spaces .. 13
write_symb.. 13
write_to_string .. 15
write_to_string_symb .. 15
write_window .. 28
writeq .. 12

