

CS-Prolog II

Version 2.3

Networking

Supplement to User's Manual

ML Consulting and Computing Ltd.

Budapest, Hungary

April 1998

1

Contents

1. Introduction .. 3

2. Networking concepts ... 4

3. Basic networking notions ... 5

3.1 Network objects .. 6

3.1.1 Community ... 6

3.1.2 Partner ... 7

3.1.3 Mediator ... 7

3.1.4 Port .. 8

3.1.5 Dock ... 8

3.1.6 Connection ... 8

3.1.7 NetPeer .. 9

3.2 Alerts .. 9

3.3 Network picture... 9

4. Network programming .. 11

4.1 Initializing the community ... 11

4.2 Creating ports ... 11

4.3 Configuring partners ... 12

4.4 Connecting to partners.. 15

4.5 Closing activities .. 16

4.6 Working with foreign partners ... 17

4.7 Status changes of network objects .. 18

4.8 Attribute handling ... 20

5. Object attributes... 21

5.1 Community attributes.. 21

5.2 Partner attributes .. 22

5.3 Mediator attributes .. 22

5.4 Port attributes ... 23

5.5 Dock attributes ... 23

5.6 Connection attributes .. 24

5.7 NetPeer attributes ... 24

6. Alerts ... 25

6.1 Community related alerts .. 25

6.2 Partner related alerts .. 26

6.3 Port and Dock related alerts ... 27

6.4 Connection related alerts .. 27

6.5 NetPeer related alerts ... 28

7. Exception terms ... 29

8. Networking built-in predicates ... 30

9. Changes in existing predicates .. 61

10. Implementation-defined limits and constants ... 64

11. APPENDIX A — MEDIATORS AVAILABLE... 65

2

11.1 The ascii mediator for plain text communication ... 65

11.2 The hnms mediator for communication with the HNMS server 66

11.2.1 Syntax notation ... 67

11.2.2 Explanation of the syntax .. 68

11.2.3 Semantics... 69

11.2.4 Notes .. 71

Index of networking built-in predicates ... 73

Chapter 1: Introduction

3

1. Introduction

This document describes the networking interface of CS-Prolog II. It constitutes a supplement

to CS-Prolog II User’s Manual.

In order to understand this description, working knowledge of CS-Prolog II real time

programming features and built-in predicate set is necessary.

The addition of networking facilities to CS-Prolog II had been accomplished in the framework

of the EU funded INCO-Copernicus project ExperNet: A Distributed Expert System for the

Management of a National Network, No 960114.

ExperNet relies on data provided by the public domain NAS Hierarchical Network

Management System (HNMS) developed at the NASA Ames Research Center, and also

includes source code borrowed from there for interfacing. That’s why HNMS has a

distinguished status in CS-Prolog II Networking.

The communication model implemented in CS-Prolog II is a moderate generalization of the

networking requirements dictated by the ExperNet project where CS-Prolog programs

cooperate with partner applications in a distributed system.

CS-Prolog Networking Interface

4

2. Networking concepts

As a natural extension of CS-Prolog channel concept, the external communication

conceptually consists of unidirectional message streams.

In order to facilitate the speed-up of external communication asynchronous message passing is

introduced as an option. Send operation in this case still remains blocking but the condition for

continuing execution is the availability of sufficient buffer space instead of the commencement

of the matching receive operation.

Communication with applications using different protocols is possible (heterogeneity). At

present only the TCP/IP protocol is fully supported as the primary network access facility.

Restricted support of the UDP/IP and the HNMP protocols is implemented in the form of

foreign partner communication. The details of different communication kinds are mostly

hidden behind a uniform interface.

An accessible partner is a fellow application we can communicate with. A partner can be an

other CS-Prolog application. In this case the communication with it is unrestricted in the sense

that any Prolog term can be sent and received. Communication with a non CS-Prolog (foreign)

application is more restricted. Each type of foreign applications requires a specific translation

between its message format and Prolog terms. This translation is performed by an entity called

mediator. The mediator also might be required to perform some protocol-conversion tasks.

We provide the possibility of taking part in the work of an existing distributed system that

maintains its network configuration probably by a non CS-Prolog master, using perhaps its

own protocol.

For the Prolog programmer the communication environment appears as a homogenous

address space (community). All partners will be accessed via channel messages. A separate

mechanism is introduced for connecting channels to external partners. The most important

entity for this task is the so-called port.

Every application taking part in a dynamically changing distributed system needs a picture of

the current configuration of that system (subnetwork for short) to find out which partners are

accessible and at what ports. However, in a large subnetwork an application is normally

concerned only with a subset of the possible partners, so a narrowed ‘sub-map’ will be

sufficient. CS-Prolog II provides the necessary devices for maintaining such a view.

Besides, or instead of, taking part in a centrally managed subnetwork, an application can have

a set of private network connections managed by itself.

This manual describes the second release of networking CS-Prolog II. In this release only the

TCP/IP protocol is fully supported, the community can be set up only in non-managed mode

and only private network connections can be established to other CS-Prolog partners. A

restricted form of external subnetwork management — partner directory service — is

available from the HNMS server accessed as foreign partner. Two kinds of non-CS-Prolog

applications can be accessed as foreign partners through appropriate mediators: the HNMS

server and a broad class of applications that receive and send messages consisting of plain

ASCII text lines. There is no support for the common dock yet.

Chapter 3: Basic networking notions

5

3. Basic networking notions

In CS-Prolog II networking interface an object-like approach is used. The interface objects

(enumerated later) have attributes and methods for retrieving attribute values and setting some

of them. These attributes describe the properties of the object.

The interface objects are local to the application, even when they represent a global

communication object.

Every object has a special attribute named status. Status gives information about the state of

the object (initializing, normal, closing, etc.).

Each object instance has a name attribute, which must have a restricted atom as value (unique

within its object class). This name atom in some cases is fixed in advance, in other cases it is

assigned when the object is created. The latter kind can be explicitly specified in the call

creating the object instance, or the program can have the system generate a name. System-

generated names are atoms having a specific prefix. Explicitly assigned names are subject to

the following restrictions: the atom nil ([]) cannot be used, the name cannot have the specific

prefix $ (currency character) as its first character, and the length of the atom must not exceed

an implementation defined limit (presently 31 characters).

The built-in predicates used for setting up communication paths to partners across the network

are asynchronous by nature; i.e., they do not suspend the calling process. The progress of the

actions is reflected in the state of the corresponding interface objects. The user program is

notified of the success, failure or other termination of an action through a special real-time

event if such an event is specified at initialization. These optional notifications are called

alerts. Some other asynchronous state changes are also reported to the program using alerts,

e.g., when an other application (called unsolicited partner) initializes a network connection to

our application by including our application as a private partner into its local community.

We conclude this chapter by some remarks on terminology. For the sake of simplicity we use

some well-known terms specifically to denote interface object types, e.g., port or connection.

We hope that most of the time this will not cause any confusion, because this description in

general is not concerned with their customary meaning. There are, however, some possible

conflicts to note in advance:

partner is an interface object representing a partner application, but sometimes the

latter is also referred to as partner.

connection is an interface object representing an outgoing message stream (similar to

a file opened for writing). It is uni-directional. In some cases we also have to talk

about network connection, which is a lower level notion, e.g., a TCP/IP connection

between partner applications maintained by the supporting software layer. We will

refer to the latter kind by the qualified term network connection when the context

requires.

port normally means the interface object to which a message stream (connection) can

be directed from a partner application. It is different from the port notion defined for

the TCP/IP protocol, which we will always call ip_port.

Objects of the networking interface will be called network objects for short.

CS-Prolog Networking Interface

6

Network object instances will be called simply network objects or just objects when the

context allows.

Port and dock are very similar, so instead of using the phrase ‘port or dock’ every time, we

usually refer to port only. When the distinction is important, it will be made specifically.

3.1 Network objects

Objects of the following types can be created: community, mediator, partner, port, dock and

connection.

All network objects have a name that can be used whenever the object is referenced. The name

of the community is fixed (only one community can exist at present). Other names can be

supplied by the user or they are generated by the system. The generated names begin with the

dollar sign (’$’). The object names specified by the user must not begin with this character.

The nil atom ([]) is also excluded from the domain of valid network object names.

Network objects can be removed (closed, deleted) by the application which created them.

These deletions can be done gracefully — when the object removal is negotiated with the

concerned partner, or forcibly — when the removal is immediate, and only an attempt to

notify the affected partner is undertaken.

There is also a special object type called NetPeer, which cannot be created by the application.

NetPeer objects are created and controlled by the system if our application is connected to an

external subnetwork manager providing directory service. The information about other

CS-Prolog applications — peers — connected to the same external manager is stored in these

objects. In most respects NetPeer objects behave like the others.

3.1.1 Community

Community is an abstract entity describing the world we communicate with. The community

maintains the current configuration of the communication partners. The partners can be

subdivided into two groups, those from the centralized subnetwork and private clientele. The

centralized subnetwork has a managing partner, which takes care of the connections inside it,

and maintains the full map of the subnetwork. Joining the centralized subnetwork means

connecting the managing partner (manager for short).

All partners belonging to the subnetwork can access the full picture of the subnetwork via the

manager. However, for efficiency’s sake, each partner manages a restricted local map

describing only that part of the subnetwork which is relevant for its task. Changes in the full

picture are projected onto each local map. Private partners are included in the local map, but

are not noted in the centrally managed full picture.

The community has to be explicitly initialized from CS-Prolog. The initialization of the

community depends on the status of our program in the network. This status can be manager

or subordinate (slave). Initialization conceptually consists of two stages: creating the

community object and populating it with partners (community_init/5 and

community_activate/1). Further configuration changes can be accomplished by a separate

method (community_change_config/2).

Chapter 3: Basic networking notions

7

Community termination method is implicit on Prolog shutdown, but as part of good

programming practice it should be invoked explicitly from the program (community_shut/1).

On community shut all subordinate network objects (partners, mediators, ports, docks, and

connections) are closed.

3.1.2 Partner

A partner is a fellow application we can communicate with. Our own application also can be

regarded as a partner for communication purposes. Partners can be created at community

initialization (community_activate/1) and created or removed any time later while the

community exists (community_change_config/2). A special partner, denoting our application

itself, is always created, it is the self partner. The self partner can be used in the same way as

external ones.

An important characteristic of a partner is whether or not it understands the message format

and exchange protocol used internally by CS-Prolog II. If it does, then we can communicate

with it directly. Such partners are termed prolog partners for brevity. In the opposite case the

partner is a foreign one, and we need the services of a special agent (called mediator) during

the communication with it.

Outgoing messages can be directed to a selected port of a CS-Prolog partner application or to

a dock offered by a foreign partner. The representation of an outgoing message stream is the

connection.

The stream of all incoming messages is separated into substreams. Each incoming substream is

available at one of the ports or docks created by the program for this purpose. In general

several connections are merged into one incoming substream; the contributing connection can

be identified by a (newly introduced) argument of the receive/4 predicate. Ports and docks are

essentially the means of demultiplexing the incoming message stream into substreams.

Network connection can also be established implicitly with uninvited partners that contacted

us unilaterally; they are the so called unsolicited partners. Such partner applications are not

represented by partner objects in the community. The total number of partners (either explicit

or unsolicited) a CS-Prolog application using TCP/IP protocol can be connected with is

limited (currently 30).

A partner can be specified in different ways, but fundamentally it is determined by its net

address the format of which depends on the communication protocol used. At present only the

IP protocol family is supported where a partner’s net address consists of two parts: host

address and TCP or UDP port number. The first describes the computer where the partner

application can be found and the second part describes the operating system level port number

where this application listens to the outer world.

3.1.3 Mediator

Mediators are the special agents that enable a CS-Prolog II program to communicate with

foreign partners. For each supported kind of foreign partners there must be a specific mediator

which translates the message formats and converts the exchange protocols between those used

by CS-Prolog II applications on one side, and the foreign partner on the other side.

CS-Prolog Networking Interface

8

Each foreign partner requires a separate instance of the appropriate mediator kind as a

mediator object.

The detailed specification of the available mediator kinds is contained in chapter 11.

3.1.4 Port

Ports represent incoming message substreams. They are explicitly created and play the role of

a sender for a CS-Prolog channel specified at port creation. The other end of the channel can

be used in the same way as the receiving end of any internal channel.

Ports are visible for partners. A connection (outgoing message stream) can be directed to a

(usually remote) port and a channel is associated with the connection.

There are two kinds of ports: advertised and unadvertised. Names of advertised ports are

available from a specific partner attribute while names of unadvertised ports should be

acquired directly from messages or agreed upon in advance.

Summarizing the above: a port is connected to a local channel into which it feeds messages

coming from possibly several incoming remote connections

At port creation a buffering parameter can be specified indicating the size of message buffer. If

it is 0, the remote connection connected to this port will be able to send a new message only

after the port accepted the previous one.

3.1.5 Dock

Docks represent incoming message substreams, like ports; they serve foreign communication.

One common dock is created when the community is initialized; it serves all non-specific

incoming foreign streams. Additional docks can be created for individual foreign partners if

desired.

A channel is associated with each dock and is fed by it. The channel associated with the

common dock is specified on community creation. The common dock cannot be destroyed.

Other docks are associated with a channel at their creation and can be destroyed.

Each dock receives the messages to be passed to the channel associated with it from a

mediator. The mediator translates the incoming (foreign) message to a Prolog term according

to its specification. Mediators are attached to docks at creation time. The common dock’s

mediator is a default one.

3.1.6 Connection

A connection object is the representation of an outgoing message stream. Its attributes include

the local channel, the partner’s name and the partner’s port (or dock, if the partner is foreign)

to where the stream is directed.

The size of the connection’s message buffer can be set at creation. If it is set to 0 (the default

value), the connection will not accept the next message from its local channel until the

previous one is received at the target port. In this case the corresponding send predicate will

be blocked in the same way as for local message exchange. If the value of the buffering

attribute is greater than zero then more than one message can be stored in the connection

Chapter 3: Basic networking notions

9

buffer, allowing for several send operations to complete without blocking. In this case the size

can be changed later, but only to positive values (the non-blocking transmission type must

prevail). This option is introduced with the aim of reducing network communication delays.

Buffering can be used when the sender is not interested in being exactly synchronized with the

receiver.

3.1.7 NetPeer

NetPeers are special objects serving the needs of the subnetwork directory service provided by

a distinguished partner application when our application takes part in the work of a team of

distributed applications (managed subnetwork). NetPeer objects cannot be created or removed

by the application; they are created and controlled by the system when our application is

connected to such a subnetwork manager. Information about other CS-Prolog applications —

 peers — connected to the same manager is stored in these objects.

NetPeer instances may exist only when the subnetwork manager is functioning normally.

The application program can obtain the relevant data about each recognized peer using the

ask_manager/3 predicate.

3.2 Alerts

Alerts are the means of informing our application of some asynchronous events (state changes)

that arise in the networking system. Alerts are generated only if the application had specified a

real-time event in community initialization for this purpose. If for example the program has a

connection to a remote port which is closed by the partner, an alert is (optionally) generated.

The data argument of the generated event roughly describes the cause of the alert and a

specifically targeted attribute query can be used to obtain the details. This data argument is a

list of the following form:

[WhatHappened, ObjectType, ObjectInstance | Other]

WhatHappened is the reason for the alert, ObjectType is an atom selecting the type of

interface object concerned and ObjectInstance is the name of the object instance. The Other

term is a — possibly empty — list providing additional information.

3.3 Network picture

In a centralized subnetwork of CS-Prolog applications managed by a (possibly foreign)

manager program the following types of partners can appear for a specific CS-Prolog

program:

Private partners; their addresses have to be available in advance in some way for the

program (hardwired in the program, obtained from a file, e.t.c.).

Net partners, which have signed up at the manager, and our program included them in

its local picture of the network. The address of a net partner is obtained from the

manager.

Latent partners (peers), who are known by manager, but our program didn’t include

them in its local network picture. The information about latent partners (network

CS-Prolog Networking Interface

10

address, advertised ports, and some other) is collected in NetPeer objects and can be

asked from the manager.

In the present (TCP/IP-based) implementation of the CS-Prolog low-level communication

protocol, in order to be able to communicate with a peer, configuration process has to be

performed as for private partners. In other words the program has to add explicitly this partner

using the add_private action of community_change_config/2 predicate. Local picture is not

supported.

So presently the system handles only private partners; subnetwork management is restricted to

directory service, which helps in locating peers. From now on when describing the features of

partner objects we will not use the notion of ‘local picture of centralized subnetwork’, and

refer to net partners as private ones.

In future CS-Prolog versions, if the underlying network layer provides the possibility of

communicating with partners with known addresses without building a specific transmission

path to them, the necessity of explicitly configuring peers as net partners may be relieved.

Chapter 4: Network programming

11

4. Network programming

In a CS-Prolog program that communicates with fellow applications through the network, the

following main network program steps can be identified:

Creating those processes (only once, in the prelude phase) which will be engaged in

networking.

Initializing the community.

Creating the initial set of network objects that will be accessed from outside (ports,

mediators with docks).

Populating the community with partners and start actual networking activity.

Making active connections to partners.

Performing (in normal operation mode) the needed tasks, possibly changing the

community by adding/removing ports, partners, connections.

Shutting down the community, disconnecting all connections, closing all ports,

removing all partners and finally shutting down the community itself.

These steps — except the first — can be repeated in a cycle if desired.

4.1 Initializing the community

The preliminary steps to build a networking community in a CS-Prolog program is to make

some processes ready for networking tasks. A real-time process can be charged with the job of

handling the incoming alerts. Creation of such a process is not obligatory (but recommended);

if no alert event is provided in community_init/5 the system does not generate the alerts.

In the working phase (after calling start_processes/0) the community can be initialized by

calling the community_init/5 predicate. The arguments of this call determine the role of our

application in the set of cooperating applications (manager or slave), the description string

(which will be seen by partner applications), the alert event, the channel associated with the

common dock (where foreign programs can anchor) and a limit that restricts the number of

unsolicited partners (to avoid flooding our community with uninvited partners).

The last step of the preparatory phase is the port creation. Ports can be created at any moment

before community shutdown, but it is recommended to prepare those ports that our

application offers for partners before community activation. So a fellow program will be able

to retrieve our advertised port names immediately after our application is configured as partner

there, and connections targeted at prepared ports can also succeed immediately.

During this preliminary period the application does not listen to the outside world yet, and so

does not react to external requests. When all tasks described above are completed, the

community can be activated (see 4.3).

4.2 Creating ports

Ports are created by calling one of the predicates port_create/[2,3,4,5]. Five parameters

describe the features of the port to be created, of which only the first two must be explicitly

CS-Prolog Networking Interface

12

supplied in the call; the other arguments are optional with suitable default values defined. The

parameters are as follows:

The name of the port; it can be specified as an atom or a variable. If a variable is given,

the system generates a unique name and instantiates the variable with it. If explicit

name is supplied, it must conform the general restrictions for network object names.

The channel which accepts messages from the port. A process can open this channel

for receive (either before port creation or after it), and read the messages sent to the

port by calling the receive/[2,3,4] built-in predicate.

The publicity status of the port, can be on or off meaning that the port is advertised

or not advertised (the default case). The advertised port names are broadcast to all

partners, so they can retrieve these port names (using an appropriate attribute handling

predicate). Unadvertised ports can be connected only if the partner knows the name by

some other means. The publicity status can be changed later with the proper attribute

setting predicate.

The buffering limit for the port. The port accepts at least one message from every

incoming connection. If the buffering limit is 0 (the default case), a new message is

accepted only after the previous one is consumed on the other end of the port's channel

(by a receive call). If the buffering limit is positive, the port is willing to accept

additional messages from the network as long as there is space in the buffer and the

total number of buffered extra messages does not exceed the current limit. This

parameter is a hint for the CS-Prolog system, how many messages should the port

store before blocking the message stream in remote connections.

End marker indication, can be on or off (the default case). When this attribute has

the value on, a special end marker term is inserted into the incoming message stream

each time when a remote connection directed to this port is disconnected. Its role is

similar to the end_of_file term indicating the end of an input stream: it denotes

the end of a network message substream (from a particular connection). The form of

this term is:

end_of_message_stream(MODE)

where MODE is graceful or force, showing the mode of disconnect. The CS-

Prolog system provides this marker term in error situations, too, when the connection

is broken due to some networking error situation.

4.3 Configuring partners

The community can be populated with partners initially when it is activated

(community_activate/1). Later on new partners can be added and partners can be removed

from the community at any time (community_change_config/2). In order to access a new

partner its communication protocol and its net address must be known. The protocol and the

address of a private partner are acquired by the program independently from the CS-Prolog

system. For net partners the manager sends these data together with the notification about the

appearance of a new partner, or they can be asked from the manager explicitly.

The address specification depends on the communication protocol.

For each prospective partner a configuration list has to be provided in order to define the

necessary data for locating the partner on the network, and some other attributes. The

Chapter 4: Network programming

13

members of this list are configuration options, i.e., special Prolog terms each representing one

configuration option. Almost every option with a value argument has a default value which is

used when the option is not specified. Remember that a partner is fundamentally described by

its network address and ip_port number, but these data items can be specified in several

different ways.

When the community is populated initially, a special partner object representing our own

application is always created. Some of the attributes for this object can be specified explicitly

(see the self option below). This partner will be referred to as self partner in the sequel. The

self partner cannot be removed.

At any time there can be at most one foreign partner for communicating with a HNMS sever

(it will be referred to as the HNMS partner).

The following configuration options are available for defining a new partner:

name(NAME)

NAME — an atom or a variable. If an atom is supplied, then it must conform the

restrictions for network object names; it will be the name of the partner. If this

option is not specified or if NAME is variable, the system generates a new,

unambiguous atom for this purpose. If NAME is a variable this generated atom is

unified with it.

mediator(MED_NAME)

By specifying this option for a partner that partner is qualified as foreign.

MED_NAME — an atom, the name of an existing free mediator which is to provide

the facilities necessary for communicating with this foreign partner (and

determines its type). The set of the available mediator kinds is not fixed; they are

listed in the appendices in chapter 11. (In Release 2.1 hnms and ascii are

available.)

protocol(P)

P — the name of the communication protocol to be used for this partner.

Presently the following protocols are known by the system: tcp, udp, and hnmp,

indicating the TCP/IP, UDP/IP and HNMP protocols, respectively. The

acceptable protocol depends on the partner’s type. Normal (prolog) partners use

only the tcp protocol, which is the default for them. The foreign partner created

for communicating with the HNMS server uses the hnmp protocol, and this is the

default for it. Foreign partners created for plain text (ascii) communication can use

either the tcp or the udp protocol; the default for them is tcp. Note that the

service option below also can implicitly provide the protocol used in ascii

communication.

hostname(HOST)

HOST — an atom indicating the name of partner’s host. It has to be a valid host

name known by the operating system. This option is one of the ways by which the

network address can be specified. It doesn't have a default value, except for the

case of the HNMS partner, for which the local HNMS installation defines the

default hostname. (See also the ip_addr option below.)

CS-Prolog Networking Interface

14

ip_addr(ADDR)

ADDR — an atom containing the TCP/IP address of partner’s host in dot notation.

If both hostname and ip_addr configuration options are specified, they must

refer to the same host computer. The default value is the primary address of the

local host (used only if the hostname option is not specified either). This option

cannot be specified for the HNMS partner (see section 11.2).

service(NAME)

NAME — an atom, the symbolic port identifier known by the operating system.

This option is one of the ways by which the ip_port number can be specified (see

also ip_port option below). There is no default value for service. For ascii

type foreign partners if the protocol option is specified explicitly then only

compatible service is looked for, otherwise the service found provides the

protocol type, too. This option cannot be specified for the HNMS partner (see

section 11.2).

ip_port(PORT)

PORT — an integer, the operating system port number where the partner listens.

If both service and ip_port are specified the latter one will be used (no

check for consistency of these two options). The default value in the current

implementation is 5130 (used only if the service option is not specified

either). This option cannot be specified for the HNMS partner (see section 11.2).

self

Indicates that the config option list defines parameters for ourselves (our

application, the self partner). If hostname and/or ip_addr option is also

given, the network address specified by them must be one of the valid interface

addresses of our host computer. The service or ip_port option defines the

port where our application will listen to the outside world.

max_retries(M)

M — an integer, the maximum number of failed net connection attempt retries. The

default value is the CS-Prolog maximal integer (practically infinity).

retry_delay(N)

N — an integer specifying the length of the time-interval (in hundredths of

seconds) to wait before the next attempt when a failed net connection is to be

retried. The default value is 6000 (one minute).

fcaa_freq(F)

F — an integer indicating the frequency of failed net connection attempt alerts. If

a connection request fails, the CS-Prolog system may generate an alert notifying

the program about the failure. This option means that the alert will be generated

on every M-th failed connection attempt only. The default value is 1 (every failure

will be reported).

If the list specifying parameters for a particular partner contains multiple occurrences of an

option then only the last one is used, but of course all items are checked for validity. The

remaining list is then checked for internal consistency, but no validation against the current

community configuration is performed at this stage. Among the internal consistency criteria

Chapter 4: Network programming

15

the following are not self evident: self can be specified at most once and only in the

initialization phase, and self cannot be foreign.

If all partner configuration lists specified in the current call pass these tests, then the partner

objects are created and configuring action is started for each requested partner individually

(and asynchronously).

The first step of the configuring action is verifying whether the requested partner has already

been configured. If so, the newly created partner object is assigned zombie status and a special

attribute is set to the name of the already existing partner object, and optionally an alert is

generated.

A special check is performed for a foreign partner supported by a hnms mediator (the HNMS

partner). The situation when the configuration of a new HNMS-type foreign partner is

attempted while the HNMS partner still exists, is considered a conflict exactly like if the same

(full) network address had been specified or implied (i.e. it leads to the partner_already_exists

alert and status change as the case above), even if a different HNMS server is implied.

After this the availability of a communication slot is checked, and if this fails, then the attempt

is aborted like in case of fatal network error condition (see below). Otherwise, when all

conditions are met, then the setting up of the appropriate net connection begins.

If an attempt to set up a net connection to the desired partner application is not successful the

created partner object remains in initial state. Establishing the net connection will be retried no

sooner than after retry_delay hundredths of seconds. If the max_retries count is

reached or a fatal error occurs the operation is aborted and the partner object’s status becomes

zombie.

The following configuration options are valid for partner removal:

name(NAME)

NAME — an atom, the name of the partner to be removed.

graceful

Indicates graceful removal, in cooperation with the partner application. All

connections directed to this partner will be disconnected in graceful mode before

deletion of the partner object, and also all remote connections coming from this

partner will be instructed to disconnect.

force

Indicates forced removal. An attempt to notify the partner application will be

undertaken, but the local partner object will be deleted anyway. All connections to

this partner will be disconnected in force mode.

4.4 Connecting to partners

If an application wants to send a message to another one, a connection has to be created

(connect_to_port/[4,5], connect_to_dock[4,5]). The partner object representing the partner

application must already exist. The following five parameters define a connection:

The name of connection. It can be specified as an atom or a variable; in the latter case

the system generates a name for the connection and unifies it with the variable.

The name of the partner we want to connect to.

CS-Prolog Networking Interface

16

The name of the partner’s port which will receive the message stream. This port has to

exist in the partner’s community.

Local channel name which will feed messages into the connection. A local process can

open this channel for send (either before creating the connection or any time later) and

send messages using the send/2 predicate.

The maximum number of buffered messages. If this optional parameter is 0 (this is the

default case), sending a message through this connection blocks the active process,

which can resume execution only when the acknowledgment arrives from the receiver

process. For positive values of this buffering limit no acknowledgment is awaited and

the connection stores the messages as long as there is space in the buffer and the

number of unsent messages does not exceed the current limit. Otherwise the next send

operation will block, and the block is released when a message can be sent from the

connection (the remote port can accept the message).

If the partner is in initial state yet (the net connection is in progress) the requested port or

dock connection is suspended, and will be performed when the partner’s status becomes

normal. If the partner's status is, or becomes, zombie before the connect request completes,

the status of the created connection object also becomes zombie and optionally an alert is

generated.

4.5 Closing activities

Every network object created by an application can be removed (closed, deleted) by it. These

deletions can be done in either of two modes: graceful or force. Graceful close means an

attempt to clean up all remote links of the object in cooperation with the interested partners.

The delivery of all messages that are already on their way is awaited. (In case these messages

are not delivered — e.g., because of a network error — the graceful closing will never

complete.)

A forced close means the deletion of the object and its links independently from the partner

applications; this will always succeed within a moderate amount of time. An attempt to inform

the affected partners is undertaken, but no acknowledgment is awaited from them. Pending

messages (if any) are silently discarded.

Network objects that cease to function normally because the link to their corresponding

remote entity is lost, are not deleted; they become zombie instead. The application can get

rid of these zombie objects removing them with an appropriate predicate. A partner object can

become zombie if the remote community disappears either because of a shutdown or a

network error. A connection object turns zombie if its remote port is closed or if its partner

object becomes zombie.

Graceful port and dock closing induce the following activities:

Every remote connection directed to this port is instructed to cease activity and

become zombie after the last buffered message is sent and acknowledged.

Delivery of all pending messages and the disconnection of all affected connections is

awaited.

When the last connection is removed the receiving channel is closed and the port or

dock is deleted.

Chapter 4: Network programming

17

An alert is generated (if needed).

Graceful disconnection means the following activities:

The sending channel is closed.

The messages in the connection’s buffer are sent (if any).

The remote port or dock is informed about disconnect.

When the acknowledgment arrives from the remote port (following all messages

buffered at the port prior to the notification) the connection object is deleted.

An alert is generated (if needed).

Graceful removing of a partner object generates the following actions:

All connections are gracefully disconnected.

When there are no more connections for the partner object, it is deleted.

An alert is generated (if needed).

Graceful community shut down means the following:

All partners (except the self partner) are gracefully removed.

All ports and docks are gracefully closed.

When there are no more ports, docks, and remote partners, the community is deleted.

An alert is generated (if needed).

Closing actions in force mode act in a similar way, with the differences that all implied sub-

actions are issued in force mode, there is no waiting for completion, and no alerts are

generated (force mode closing always succeeds within a short time).

4.6 Working with foreign partners

Foreign applications do not understand the message format used in prolog-to-prolog

communication, so they need an agent that performs the appropriate data and protocol

conversion. Such agents are called mediators in our system. They are considered to be part of

the CS-Prolog II run-time program, just as the network driver is.

At present there are two mediators defined. The one for plain text communication is denoted

by the mnemonic keyword ascii. The other, for communicating with the HNMS server, is

named hnms.

Conceptually a local mediator is communicating with a remote mediator, hosted at the foreign

partner, addressing the dock it offers. Data sent by the remote mediator is accepted at the

dock of the local mediator. In fact, however, the functionality of the remote mediator is also

implemented locally and the remote dock is a fiction that abstracts the capability of the foreign

application that it can be connected to.

Docks are similar to ports. They play the same role in the communication; the difference is in

the way a dock is prepared for work and is connected to implicitly by the mediator on behalf

of the foreign partner. Docks (and mediators) are non-reusable objects in the sense that once

they had been dedicated to a specific foreign partner they cannot be used with another, even if

CS-Prolog Networking Interface

18

the original partner is removed and the new candidate is of the same type. In such

circumstances the program has to close the old objects and create new ones.

At present, foreign partners envisioned accept a single, uniform message stream only. This

means in our terms that they offer us only one default dock, which need not be named

specifically in the connect_to_dock predicate. Nor are local dock names advertised like port

names.

For generality, however, the foreign dock name argument is required in connect_to_dock, but

it must specify the default dock of the foreign partner by giving the nil atom as argument

value.

In order to configure a foreign partner, the application program shall first create a dock

(unless it wants a silent partner), then create a mediator of the appropriate kind, naming a free

dock for it, and finally configure the desired foreign partner, naming the mediator in the list of

the configuration parameters (implying thereby that the partner is foreign).

Once the foreign partner is successfully created, the procedure to follow in message exchange

is almost the same as for any prolog partner.

The program can issue connect_to_dock calls to prepare channels for sending messages to the

foreign partner (dock_name should be given as nil), and can receive messages coming from

the foreign partner on the channel attached to the dock of the mediator of the partner.

If there are more than one active connections to the same foreign partner, the messages are

merged into one outgoing message stream so that the relative order of messages sent via each

individual connection is preserved.

The most important restriction in communicating with foreign partners is in the set of rules

specifying that what kinds of prolog terms are accepted and produced by them. This

specification constitutes the description of the individual mediator kinds.

The detailed description of the available mediators is contained in chapter 11.

4.7 Status changes of network objects

During its lifetime the community status can have the following values:

initializing from community_init/5 until community_activate/1 completes;

normal after community_activate/1 succeeds until community_shut/1

request;

zombie after community_activate/1 fails until community_shut/1 (self

partner is still accessible).

closing from community_shut/1 request until the completion of the

operation;

A partner object can have the following status values:

initial from creation until the completion of the net connection process;

normal from successful completion of the net connection process until the

program removes the partner (community_change_config/2 or

community_shut/1), or the partner application shuts down, or the

connection to it is lost;

Chapter 4: Network programming

19

zombie if the connection process failed, or if the partner application had been

shut down or if connection is lost to the partner application, until

explicit partner removal call.

closing from explicit partner removal call until the completion of closing;

A port object can have the following status values:

initial only for advertised ports, from creation until the successful broadcast

of port name to partners;

normal for unadvertised ports is set on creation, for advertised ones when the

port name broadcast is done, until port close request;

closing set when port close request is issued (port_close/[1,2] or

community_shut/1) until completion of the request.

A dock object can have the following status values:

initial indicates that the dock is free (immediately after creation);

normal set when the dock is attached to a mediator;

closing set when dock close request is issued (dock_close/[1,2] or

community_shut/1), until its completion.

zombie indicates that the partner with which this dock is associated had been

removed or became zombie, and there are no buffered messages

waiting delivery at the dock.

A connection object can have the following status values:

initial from connection request (connect_to_port/[4,5]) until completion of

the request;

normal from successful completion of the connection process until explicit

disconnect request (disconnect/[1,2] or removal of the target partner

or community_shut/1), or until the connected partner closes the

target port (or shuts down), or partner is lost;

zombie if the connection request fails, or if the partner application closes the

destination port of the connection, or partner is lost, until explicit

closing succeeds.

closing from explicit disconnect request until its completion;

A mediator object can have the following status values:

initial indicates that the mediator is unattached (set on creation and also

when the hosting partner is removed and the mediator becomes free

again);

normal set when the mediator is attached to a designated partner;

zombie indicates that the associated dock is zombie.

CS-Prolog Networking Interface

20

4.8 Attribute handling

The attributes of network objects describe their properties relevant for the user program. Two

sets of built-in predicates serve for retrieving and setting attribute values. Most of the

attributes are read-only, i.e., cannot be changed by the user.

The <object_name>_current_attribute/[3,4] predicates serve for obtaining attribute values.

(<object_name> can be one of: community, partner, mediator, port, dock, connection.)

The first three arguments are:

object name

attribute name

attribute value

They all can be instantiated or uninstantiated. The predicates are resatisfiable, they will

enumerate all object name, attribute name, attribute value triplets that match the arguments.

The optional fourth argument can be conditional or unconditional. It influences the

system’s behavior if either the community does not exist or the object name is provided in the

first argument, but there is no object with this name. Unconditional operation (this is the

default) will generate a CS-Prolog exception in these circumstances, while the conditional

version will simply fail.

The modifiable attributes can be set with the predicate <object_name>_set_attribute/3. The

arguments are the same as arguments of <object_name>_current_attribute/3, but in this

case they all must be instantiated.

Chapter 5: Object attributes

21

5. Object attributes

In this section the attributes of network objects are listed. Attributes describe the relevant

properties of an object. Some attributes are fixed at creation (and retain their value during the

lifetime of the object), others can change. There are read-only (modified only by the system, if

at all) and user-modifiable attributes.

5.1 Community attributes

Name Value Variance

name net object name atom fixed

mode manager or slave fixed

description description string fixed

manager one of the partners or nil fixed

common_channel channel name for common dock or nil fixed

alert_event event for alerts or no_event fixed

host_name local host name fixed

status initializing, normal, closing, zombie changing

CS-Prolog Networking Interface

22

5.2 Partner attributes

Name Value Variance

name net object name atom fixed

protocol protocol name (tcp, udp, or hnmp) fixed

host_name initially nil, set to the host name taken from

partner's community when status becomes normal

changing

ip_addr net address (string in dot notation) or ‘0.0.0.0’ (for

the HNMS partner)

fixed

ip_port low level port number (65535 for the HNMS

partner)

fixed

description string (atom) from the community of the represented

application

fixed

type communication level (prolog or foreign) fixed

port_names list of partner’s advertised port names changing

net_status private or net fixed

retry_delay time interval before next retry if net connection fails modifiable

fcaa_freq frequency of alerts if net connection fails modifiable

max_retries number of retries if net connection fails modifiable

self true for the self partner, otherwise false fixed

other_partner initially set to nil, if conflict with already configured

partner is detected then changed to the name of that

partner

changing

status initial, normal, closing, zombie changing

mediator name of the associated mediator fixed

5.3 Mediator attributes

Name Value Variance

name net object name atom fixed

kind hnms or ascii fixed

description description string fixed

partner the name of the partner to which the mediator is

attached, or nil

changing

dock_in the name of the attached dock or nil fixed

flag1 (depends on kind - set at creation from argument) fixed

flag2 (depends on kind - set at creation from argument) fixed

status initial, normal, zombie changing

Chapter 5: Object attributes

23

5.4 Port attributes

Name Value Variance

name net object name atom fixed

channel receiver channel name fixed

connections list of incoming remote connection descriptors changing

queue_length number of unprocessed buffered messages changing

buffering_limit upper bound for the number of messages that can be

buffered

modifiable1

advertised publicity status (on, off) modifiable

insert_end_marker on or off fixed

status initial, normal, closing changing

5.5 Dock attributes

Name Value Variance

name net object name atom fixed

channel receiver channel name fixed

queue_length number of unprocessed messages changing

buffering_limit upper bound for the number of messages that can be

buffered

modifiable2

mediator name of the mediator to which the dock is attached,

or nil

changing

status initial, normal, closing, zombie changing

1 If the buffering argument on port creation is positive, it can be changed later to an other positive number, but

cannot be changed to zero. Zero initial values cannot be changed at all.

2 If the buffering argument on dock creation is positive, it can be changed later to an other positive number, but

cannot be changed to zero. Zero initial values cannot be changed at all.

CS-Prolog Networking Interface

24

5.6 Connection attributes

Name Value Variance

name net object name atom fixed

partner name of the connected partner fixed

target name name of the connected port or dock (at partner) fixed

channel sender channel name fixed

queue_length number of unsent buffered messages changing

buffering_limit upper bound for the number of messages that can be

buffered

modifiable3

status initial, normal, closing, zombie changing

5.7 NetPeer attributes

Name Value Variance

name net object name atom fixed

description string, from the peer application’s community fixed

protocol protocol name (now only tcp) fixed

host_name taken from peer application's community fixed

ip_addr net address (string in dot notation) fixed

ip_port low level port number fixed

port_names list of port names advertised by the peer changing

partner the name of the partner object if the peer is

configured as a partner, otherwise nil

changing

3 If the buffering argument on connection creation is positive, it can be changed later to an other positive

number, but cannot be changed to zero. Zero initial values cannot be changed at all.

Chapter 6: Alerts

25

6. Alerts

This chapter contains the detailed description of networking alert events. Alerts are optionally

sent by the system to inform the CS-Prolog program about asynchronous events that occurred

in connection with some networking operation. The event name used for alerts can be set on

community initialization. The event data part of an alert is a list describing the alert itself. This

list has at least three elements:

Alert name — an atom indicating the reason of the alert;

Object type — the name of the object type related to the alert;

Object instance — the name of the specific networking object (of type Object type)

related to the alert.

There may be further elements providing additional information specific to the alert in

question. When error number and error text are included in this part, they represent the

corresponding data items obtained from the operating system.

6.1 Community related alerts

Alert name Object

type

Object

instance

indicated

Other Explanation

community_activate_failed

community the

community

error number,

error text

An error occurred while activating.

E.g., wrong tcp port number was

given (self partner is still accessible).

community_shut_succeeded

community the

community

nil The shutdown has been completed

CS-Prolog Networking Interface

26

6.2 Partner related alerts

Alert name Object

type

Object

instance

indicated

Other Explanation

new_partner

partner the new

partner

object

nil The net connection to the partner has

been successfully set up.

hnms_partner_is_recovering

partner the hnms

partner

object

nil The hnms driver lost connection to

the hnms server and is trying to

reconnect.

hnms_partner_recovered

partner the hnms

partner

object

nil The hnms driver succeeded in

re-establishing connection to the

hnms server.

partner_already_exists

partner the failed

partner

object

(zombie)

conflicting

partner’s

name

The requested partner is already

configured.

net_connection_failed

partner the failed

partner

object

(zombie)

qualification,

error number,

error text

Some error occurred. Qualification

can be: still_in_progress,

retry_count_reached, fatal_error,

hnms_driver_launch_error,

hnms_driver_does_not_respond,

partner_removed

community the

community

object

ip_addr and

ip_port config

options

Graceful partner removal succeeded.

The other elements identify the

removed partner.

Unsolicited_partner

community community

object

ip_addr and

ip_port config

options

An other application has set up a net

connection to us. The other elements

identify this application.

partner_is_closing

partner partner

object

(zombie)

nil The partner application shuts down its

community.

partner_is_lost

partner partner

object

(zombie)

error number,

error text

The net connection to the partner is

broken due to an error.

partner_limit_exceeded

partner partner

object

(zombie)

nil There is no available free

communication slot.

Chapter 6: Alerts

27

6.3 Port and Dock related alerts

Alert name Object

type

Object

instance

indicated

Other Explanation

port_close_succeeded

community the

community

object

port name The graceful port closing has been

completed.

dock_close_succeeded

community the

community

object

dock name The graceful dock closing has been

completed.

6.4 Connection related alerts

Alert name Object

type

Object

instance

indicated

Other Explanation

connect_to_port_succeeded

connection connection

object

nil Connection to a remote port has been

successfully completed

connect_to_dock_succeeded

connection connection

object

nil Connection to a remote dock (of a

foreign partner) has been successfully

completed

connect_to_port_refused

connection connection

object

(zombie)

nil Connection to a remote port has

failed. (No such port, partner is

closing, etc.)

connect_to_dock_refused

connection connection

object

(zombie)

nil Connection to a remote dock has

failed. (No such port, partner is

closing, etc.)

disconnect_succeeded

community community

object

connection

name

The graceful disconnect request has

been completed.

remote_port_is_closing

connection connection

object

(zombie)

close mode

(force or

graceful)

The connected remote port is being

closed by the partner.

remote_dock_is_closing

connection connection

object

(zombie)

close mode

(force or

graceful)

The connected remote dock is being

closed by the partner.

CS-Prolog Networking Interface

28

6.5 NetPeer related alerts

Alert name Object

type

Object

instance

indicated

Other Explanation

appeared

net_peer net_peer

object

nil A new peer application appeared (not

represented previously).

reconnected

net_peer net_peer

object

nil A peer application known about

previously has reconnected the

network manager. The continuity of

its operation might have been

disrupted.

updated

net_peer net_peer

object

nil The advertised portname list of the

peer application has changed.

net_peer_terminated

community the

community

object

ip_addr and

ip_port

config

options

The net peer application has signed

off from the subnetwork manager

(either shut down gracefully, or

removed the subnetwork manager

from its community).

net_peer_removed

community the

community

object

ip_addr and

ip_port

config

options

The subnetwork manager lost

connection to this peer without the

peer having previously signed off.

net_peer_lost

community the

community

object

ip_addr and

ip_port

config

options

The NetPeer object for this peer had

been discarded because connection is

(temporarily) lost with the

subnetwork manager.

implementation_limit_exceeded

community the

community

object

‘directory_e

ntry_size’

The total length of strings contributed

to the NetPeer descriptor entry of this

community is too large.

Chapter 7: Exception terms

29

7. Exception terms

The following new exception constants are introduced in connection with the networking

predicates:

ValidDomain
net_close_mode_option

net_init_mode_option

net_partner_limit

port_name

option

netconfig_option

explicit_netobj_name

ip_addr

ip_port

netconfig_action

net_attribute

net_attr_value

predicate_mode

mediator_kind

hnms_option

ObjectType
netobject

nethost

netservice

PermissionType
netobject

netobj_name

net_attribute

net_max_qlength

A new exception term and an associated error type category are also introduced:

consistency_error(ConflictType, Culprits)

Two options given in a built-in predicate for an object contradict. The Culprits term has

the form C1 + C2 indicating the two conflicting options.

ConflictType
netaddr

selfhost

CS-Prolog Networking Interface

30

8. Networking built-in predicates

The new networking built-in predicates ought to be called in the working phase (after the call

of start_processes/0). These predicates are non-backtrackable; i.e., their effect is not undone

if the Prolog program does a backtrack over them.

Chapter 8: Networking built-in predicates

31

community_init/5

Description

community_init(Mode, Description, DockChan, AlertEvent,

 Limit)

Mode is the role of the community in the centralized subnetwork: manager or slave.

Description is an arbitrary string that can facilitate fellow applications in identifying us.

DockChan is a channel name accepting the messages from foreign partners directed to the

common dock. It can be nil meaning that these messages should be silently discarded. The

channel can be non-existent in the moment of the call, but if it does exist, the sending end must

be free (as for an unconditional open_channel_for_send call). The AlertEvent argument has

to be an existing event name or the special atom no_event. The alerts generated for various

asynchronous network-related state changes are directed to the real-time process that specified

this event. If no_event was supplied then alerts are not generated at all. With the Limit

argument the system is instructed to reserve this number of communication slots for

configuring partners. The maximum number of communication slots is limited (at present this

limit is 30), and these slots can be used by unsolicited partners. The CS-Prolog system will

guarantee that at least Limit explicit partners can be configured. Both active partner creation

and unsolicited partner connection will be rejected if there is no free communication slot

available. Specifying zero for Limit means reservation for explicit partners half of the available

communication slots (presently 15). Note that after a partner's removal the corresponding

communication slot still may remain occupied by the net connection (if the partner application

had also configured us on its side), which in this case is rendered unsolicited. So Limit gives

us guarantee only for the possibility of the first configurations, but does not reserve these slots

as usable for explicit partners only.

Template and modes

community_init(+net_mode, +atom, +channel, +event,

 +integer)

Examples

community_init(slave, ’Test program’, [], netalert, 0).

The community will be initialized in slave mode. No foreign messages are accepted at the

common dock, the networking alerts will be directed to the process reacting to the

netalert event.

Errors

permission_error(parallel, process, 0)

The built-in predicate has been called in the prelude phase.

instantiation_error

One of the arguments is a variable, or DockChan contains a variable.

system_error

The community is already initialized. ErrInfo-Other will be the atom community_already_initialized.

CS-Prolog Networking Interface

32

type_error(atom, Mode)

The Mode argument is neither a variable nor an atom.

domain_error(net_init_mode_option, Mode)

The Mode argument is not valid.

type_error(atom, Description)

The Description argument is neither a variable nor an atom.

domain_error(unique_name, DockChan)

DockChan is not a valid unique name.

permission_error(open, channel, DockChan)

The DockChan channel is already opened for send. The ErrInfo-Other will be the atom already_open

permission_error(open, channel, DockChan)

The DockChan channel is already opened for receive by a connection. The ErrInfo-Other will be the atom

already_network.

domain_error(unique_name, AlertEvent)

The name of the event is not a valid unique name.

existence_error(event, AlertEvent)

The required event does not exist.

permission_error(access, event, AlertEvent)

AlertEvent is one of the reserved system event names.

type_error(integer, Limit)

The Limit argument is neither a variable nor an integer.

domain_error(not_less_than_zero, Limit)

Limit is an integer that is less than zero

domain_error(net_partner_limit, Limit)

Limit exceeds the permitted number of partner communication slots (30).

Chapter 8: Networking built-in predicates

33

community_activate/1

Description

community_activate(ConfigOptionLL)

The predicate activates the community initiating the creation of partners described in

ConfigOptionLL. After the call of community_activate/1 the application will be ready to

answer partner requests. ConfigOptionLL has to be a list whose members are lists of valid

new partner config options (see 4.3).

Self partner is always created (with default attributes if not explicitly present).

Template and modes

community_init(+config_option_list_list)

Examples

community_activate([

 [self, ip_port(5555)],

 [name(friend), hostname(’eric.ml-cons.hu’), ip_port(5556)]

]).

The community is activated. Our application will listen on TCP/IP port 5555. One remote

partner is created, it is looked for on the host eric.ml-cons.hu , expected to be listening

on port 5556.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

ConfigOptionLL or one member of this list is a variable.

type_error(List, ConfigOptionLL)

Either ConfigOptionLL or one of its members is not a list.

domain_error(net_config_option, Opt)

.

domain_error(explicit_netobj_name, Name)

Name, given in a name(Name) option for an object to be newly created is not allowed as a user-specified name

for a net object. It is nil or begins with the reserved character (‘$’), or its length exceeds the maximum allowed

for network object names (31).

permission_error(create, netobj_name, Name)

Name, given in a name(Name) option is already the name of an existing partner. ErrInfo-Other will be the

atom partner.

existence_error(nethost, Host)

Host, given in a hostname(Host) option is unknown.

consistency_error(selfhost, self + Host)

Host, given in a hostname(Host) option for the self partner is not valid for our host.

CS-Prolog Networking Interface

34

consistency_error(selfhost, self + mediator)

mediator(M) option, which qualifies the partner as foreign, is invalid together with the option self, which

denotes ourselves (the application program running that executed the operation).

consistency_error(netaddr, Protocol + Kind)

Protocol, given in a protocol(Protocol) option and Kind, the kind of the mediator specified in the

mediator(M) option, are contradicting. ErrInfo-Other will be the atom

protocol_is_invalid_for_this_mediator.

consistency_error(netaddr, Protocol + prolog)

Protocol, given in a protocol(Protocol) option is not accepted for normal (prolog) partners. (At present only

tcp can be used in communication with prolog partners.)

domain_error(ip_addr, Addr)

Addr, given in an ip_addr(Addr) option is not a valid TCP/IP address.

consistency_error(netaddr, Host + Addr)

Host, given in a hostname(Host) option, and Addr, given in a ip_addr(Addr) option, are contradicting.

existence_error(netservice, Service)

Service, given in a service(Service) option is unknown.

domain_error(not_less_than_zero, TcpPort)

TcpPort given in a ip_port(TcpPort) option is an integer less than zero

domain_error(ip_port, TcpPort)

TcpPort given in a ip_port(TcpPort) option exceeds the limit for valid port numbers.

permission_error(modify, netobject, self)

There are more than one ConfigOptionLL members for the self partner.

Chapter 8: Networking built-in predicates

35

community_change_config/2

Description

community_change_config(Action, ConfigOptionLL)

The predicate adds partners to, or removes partners from, the community depending on

Action. Action can be add_private or remove. ConfigOptionLL has to be a list whose

members are lists of partner config options, valid for Action (see 4.3).

A request to remove the self partner is silently ignored.

Template and modes

community_change_config(+config_action,

 +config_option_list_list)

Examples

community_change_config(add_private, [

 [name(near), ip_port(9992)]

 [name(X), hostname(’enterprise’), service(cspnet)]

]).

Two partners are added to the community. The first will have the name near, it resides on

the local host. The other one is on host enterprise, its name will be generated by the

system, and passed back to the caller in the variable X.

community_change_config(remove, [[name(near)]]).

The partner named near is removed from the community.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

permission_error(create, netobject, Action)

The predicate was called prior to community_activate/1 call. ErrInfo-Other will be the atom

community_not_activated.

permission_error(create, netobject, Action)

The predicate was called after the community_shut/1 call (but before its completion). ErrInfo-Other will be

the atom community_is_closing.

instantiation_error

Action is a variable or ConfigOptionLL or one member of this list is a variable.

type_error(atom, Action)

Action is neither a variable nor an atom.

domain_error(netconfig_action, Action)

Action is an atom, but not a valid network configuration action.

type_error(List, ConfigOptionLL)

 Either ConfigOptionLL or one of its members is not a

list.domain_error(net_config_option, Opt)

Opt, one of the options contained inside ConfigOptionLL is not a valid net config option for Action..

CS-Prolog Networking Interface

36

domain_error(explicit_netobj_name, Name)

Name given in a name(Name) option is not allowed as a user-specified name for a network object. It is nil or

begins with the reserved character (‘$’), or its length exceeds the maximum allowed for network object names

(31).

permission_error(create, netobj_name, Name)

Name, given in a name(Name) option is already the name of an existing partner. The ErrInfo-Other will be

the atom partner.

existence_error(nethost, Host)

Host, given in a hostname(Host) option is unknown.

consistency_error(selfhost, self + Host)

Host, given in a hostname(Host) option for the self partner is not valid for our host.

consistency_error(selfhost, self + mediator)

mediator(M) option, which qualifies the partner as foreign, is invalid together with the option self, which

denotes ourselves (the application program running that executed the operation).

consistency_error(netaddr, Protocol + Kind)

Protocol, given in a protocol(Protocol) option, and Kind, the kind of the mediator specified in the

mediator(M) option, are contradicting. ErrInfo-Other will be the atom

protocol_is_invalid_for_this_mediator.

consistency_error(netaddr, Protocol + prolog)

Protocol, given in a protocol(Protocol) option, is not accepted for normal (prolog) partners. (At present only

tcp can be used in communication with prolog partners.)

domain_error(ip_addr, Addr)

Addr, given in an ip_addr(Addr) option is not a valid TCP/IP address.

consistency_error(netaddr, Host + Addr)

Host given in a hostname(Host) option, and Addr given in a ip_addr(Addr) option, are contradicting (Addr

is not recognized as one of the registered TCP/IP addresses of Host).

existence_error(netservice, Service)

Service, given in a service(Service) option is unknown.

domain_error(not_less_than_zero, TcpPort)

TcpPort, given in a ip_port(TcpPort) option is an integer less than zero

domain_error(ip_port, TcpPort)

TcpPort given in a ip_port(TcpPort) option exceeds the limit for valid port numbers.

permission_error(modify, netobject, self)

The reconfiguration of the self partner is requested.

existence_error(netobject, Name)

Name, given in a name(Name) option for remove action is unknown as partner.

Chapter 8: Networking built-in predicates

37

community_shut/1

Description

community_shut(Mode)

The predicate shuts down networking. Mode can be force or graceful. Forced

shutdown means immediate break of all network links and destruction of the community. In

case of graceful shutdown all messages already sent to the network are delivered, then all

connection, partner and port objects are disconnected (closed). The community is destroyed

when all network activity is finished.

After completion of the graceful shutdown process the program is optionally notified by an

alert. It is not allowed to shut the community gracefully twice.

For more details see: 4.5

Template and modes

community_shut(+net_close_mode_option)

Examples

community_shut(force).

Closes forcibly the community breaking all connections to all partners.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

Mode is a variable.

type_error(atom, Mode)

Mode is neither a variable nor an atom.

domain_error(net_close_mode_option, Mode)

Mode is an atom, but not a valid close mode.

permission_error(remove, netobject, community)

Graceful shutdown for the community is already in progress The ErrInfo-Other will be the list [community,

repeated].

CS-Prolog Networking Interface

38

mediator_create/3

mediator_create/4

mediator_create/5

Description

mediator_create(Name, Kind, Dock)

mediator_create(Name, Kind, Dock, Flag1)

mediator_create(Name, Kind, Dock, Flag1, Flag2)

Create a new mediator of kind Kind, with name Name, which will perform data and protocol

conversion in the process of communicating with a foreign partner when it is attached to the

corresponding partner object (when the partner is created). If Name is a variable a new unique

mediator name atom is generated by the system and it is unified with the variable. The newly

created mediator will be free until it is attached to a partner.

Kind specifies the kind of the mediator required. The argument must be a valid kind option

atom (at present either hnms or ascii).

Dock specifies the dock object to be attached to the new mediator for receiving messages sent

by the foreign partner when fully operational. It can be given as nil, in which case the

mediator will silently discard incoming messages instead of passing them to the application.

Otherwise it must be the name of a free dock object.

Flag1 and Flag2 supply values for the corresponding attributes (flag1 and flag2, respectively)

of the newly created mediator. The interpretation of these flags depends on Kind. The default

value for both is the empty string (‘’). These arguments can be specified only when the

corresponding mediator accepts the respective flag.

Template and modes

mediator_create(?netobj_name_atom, +mediator_kind_option,

 +atom)

mediator_create(?netobj_name_atom, +mediator_kind_option,

 +atom, +atom)

mediator_create(?netobj_name_atom, +mediator_kind_option,

 +atom, +atom, +atom)

Examples

mediator_create(mediator1, ascii, dock1).

A free mediator is created for handling message exchange with a foreign partner in plain ascii

text. The incoming messages will be directed to dock dock1.

Chapter 8: Networking built-in predicates

39

mediator_create(net_mediator, hnms, [], ‘’, private).

A free mediator is created for supporting message exchange with the HNMS server as foreign

partner. The mediator will discard messages coming from the HNMS server (probably only the

directory service is used, although messages sent to the HNMS server will be passed in the

normal way). The targetted HNMS server manages a HNMS community named ‘private’

(instead of the default ‘public’). Attribute flag1 is explicitly set to the (otherwise default) value

‘’ because the syntax does not allow for specifying flag2 value without flag1.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

Kind, Dock, Flag1, or Flag2 is variable.

type_error(atom, Name)

Name is neither an atom nor a variable.

domain_error(explicit_netobj_name, Name)

Name is an atom, but not valid as a user-specified name for a net object (it is nil, or begins with ‘$’, or its

length exceeds the maximum allowed for network object names (31)).

permission_error(create, netobj_name, Name)

Name is already the name of an existing mediator. The ErrInfo-Other will be the atom mediator.

domain_error(mediator_kind, Kind)

Kind is an atom, but not a valid mediator kind.

type_error(atom, Dock)

Dock is neither a variable nor an atom.

existence_error(netobject, Dock)

There is no dock with name Dock. ErrInfo-Other will be the atom dock.

permission_error(modify, dock, Dock)

Dock is not free (already attached to a mediator). ErrInfo-Other will be the atom engaged.

type_error(atom, Flag1)

Flag1 is neither an atom nor a variable.

domain_error(mediator_kind, Flag1)

Flag1 is an atom, but not valid as a flag1 attribute value for the specified mediator kind.

permission_error(create, net_attribute, Flag1)

The mediator of the specified Kind does not accept user-defined value for its flag1 attribute. ErrInfo-Other

will be [mediator, Kind].

permission_error(create, net_attribute, Flag2)

The mediator of the specified Kind does not accept user-defined value for its flag2 attribute. ErrInfo-Other

will be [mediator, Kind].

type_error(atom, Flag2)

Flag2 is neither an atom nor a variable.

domain_error(mediator_kind, Flag2)

Flag2 is an atom, but not valid as a flag2 attribute value for the specified mediator kind.

CS-Prolog Networking Interface

40

mediator_close/1

Description

mediator_close(Name)

Deletes the mediator with name Name. Only a free or zombie mediator can be closed. Closing

a mediator succeeds immediately (synchronously). No alert is sent.

Template and modes

mediator_close(+atom)

Examples

mediator_close(mediator1).

The mediator is destroyed without sending an alert.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

Name is a variable.

type_error(atom, Name)

Name is neither a variable nor an atom.

existence_error(netobject, Name)

There is no mediator with name Name. ErrInfo-Other will be the atom mediator.

permission_error(remove, netobject, Name)

The mediator is not zombie (it is associated with an active dock). The ErrInfo-Other will be the list

[mediator, engaged].

Chapter 8: Networking built-in predicates

41

port_create/2

port_create/3

port_create/4

port_create/5

Description

port_create(Name, Channel)

port_create(Name, Channel, Advertised)

port_create(Name, Channel, Advertised, Buffering)

port_create(Name, Channel, Advertised, Buffering,

 EndMarker)

Create a new port with name Name, which will feed messages into Channel. If Name is a

variable a new unique port name atom is generated by the system and it is unified with the

variable. Advertised can be on or off; it controls the publicity status of the port. Advertised

port names are broadcast to partners where they are stored in an attribute value for partner

objects (port_names). Names of non-advertised ports cannot be retrieved by partners

directly from this partner attribute; they can be connected only if the partner knows the port

name in advance. The default value for Advertised is off.

Buffering specifies the maximum number of unprocessed messages buffered for the port.

Value of 0 means that the port will accept a message from a remote connection if the previous

one from the same connection (if any) has been consumed. Positive Buffering value is an

advice to the CS-Prolog system, that it may accept more than one message from a remote

connection. The default value for Buffering is 0. Buffering value is stored in the modifiable

port attribute buffering_limit.

EndMarker can be on or off. If its value is on, the system inserts a special message

whenever a connection to the port is closed or broken. The format of this message is

end_of_message_stream(Mode) where Mode is the disconnection mode (network

errors imply force). If the value off is specified for EndMarker, or if this parameter is

omitted, no terminating message is inserted.

Template and modes

port_create(?netobj_name_atom, +channel)

port_create(?netobj_name_atom, +channel, +option)

port_create(?netobj_name_atom, +channel, +option, +integer)

port_create(?netobj_name_atom, +channel, +option, +integer,

 +option)

CS-Prolog Networking Interface

42

Examples

port_create(air_port, ch(air_port)).

A non-advertised port is created.

port_create(eric_port, eric_chan, on, 12, on).

An advertised port is created, which may store up to 12 unprocessed messages. Each time a

remote connection to this port is disconnected an end of message stream term will be inserted

for the port.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

Channel, Advertised, Buffering, or EndMarker is a variable, or Channel contains a variable.

type_error(atom, Name)

Name is neither an atom nor a variable.

domain_error(explicit_netobj_name, Name)

Name is an atom, but not valid as a user-specified name for a net object (it is nil, or begins with ‘$’, or its

length exceeds the maximum allowed for network object names (31)).

type_error(atom, Advertised)

Advertised is neither a variable nor an atom.

domain_error(option, Advertised)

Advertised is an atom, but not a valid option (off or on).

type_error(integer, Buffering)

Buffering is neither a variable nor an integer.

domain_error(not_less_than_zero, Buffering)

Buffering is an integer less than zero.

type_error(atom, EndMarker)

EndMarker is neither a variable nor an atom.

domain_error(option, EndMarker)

EndMarker is an atom, but not a valid option (off or on).

permission_error(create, netobj_name, Name)

Name is already the name of an existing port. The ErrInfo-Other will be the atom port.

domain_error(unique_name, Channel)

Channel is not a valid unique name.

permission_error(open, channel, Channel)

The Channel channel is already opened for send. The ErrInfo-Other will be the atom already_open

permission_error(open, channel, Channel)

The Channel channel is opened for receive by a connection. The ErrInfo-Other will be the atom

already_network.

Chapter 8: Networking built-in predicates

43

port_close/1

port_close/2

Description

port_close(Name)

port_close(Name, Mode)

Deletes the port with name Name in mode Mode. In graceful mode the destruction of the

port will be delayed until all connected remote connections are informed and disconnected and

all unprocessed messages are received by the program. In force mode the destruction is

immediate, partners are informed, but the unconsumed messages in the port’s buffer (and

messages on their way on network channels) are discarded. The default close mode is

graceful.

When port_close/[1,2] succeeds the attached channel is closed; it becomes available for

opening for send by any process. At completion of graceful port closing the system sends an

alert informing the program about this event.

It is not allowed to close a port gracefully more than once.

For more details see: 4.5

Template and modes

port_close(+atom)

port_close(+atom, +net_close_mode_option)

Examples

port_close(air_port, force).

The port is destroyed without caring for partners and unconsumed messages.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

Name or Mode is a variable.

type_error(atom, Name)

Name is neither a variable nor an atom.

existence_error(netobject, Name)

There is no port with name Name. ErrInfo-Other will be the atom port.

type_error(atom, Mode)

Mode is neither a variable nor an atom.

domain_error(net_close_mode_option, Mode)

Mode is an atom, but not a valid close mode.

CS-Prolog Networking Interface

44

permission_error(remove, netobject, Name)

Graceful close for port with name Name is already in progress The ErrInfo-Other will be the list [port,

repeated].

Chapter 8: Networking built-in predicates

45

connect_to_port/4

connect_to_port/5

Description

connect_to_port(Name, Partner, Port, Channel)

connect_to_port(Name, Partner, Port, Channel, Buffering)

Create a new connection with name Name, which will forward messages fed into Channel to

the port Port of partner Partner. If Name is a variable the system generates a new unique

connection name atom which is unified with Name. If Partner is in initial state the action is

suspended until the net connecting process to the partner completes (and partner’s status

becomes normal). The existence of the port is checked on partner’s side. If either the partner

is or becomes zombie, or the requested port does not exist at the partner, then the new

connection's status is set to zombie and optionally an alert is generated.

Buffering specifies the maximum number of messages stored in the connection object waiting

to be sent (the permission comes from the remote port). A value of 0 means that the

connection will accept only one message and the send operation will be blocked until the

addressee on the other side receives the message and acknowledges the receipt (the send is

synchronized). When positive buffering value is given, the send operation will not block as

long as there is space in the message buffer and the number of unsent messages does not

exceed Buffering. In this case send is not synchronized. Buffering value is stored in the

modifiable connection attribute buffering_limit. However, the zero-ness of this

attribute cannot be changed later, i.e., if it is zero, it cannot be changed to non-zero and

similarly non-zero cannot be changed to zero.

The program is optionally informed about success or failure of a connect_to_port call by an

appropriate alert.

Template and modes

connect_to_port(?netobj_name_atom, +atom, +atom, +channel)

connect_to_port(?netobj_name_atom, +atom, +atom, +channel,

 +integer)

Examples

connect_to_port(airlink, near, air_port, chan(airlink)).

A new connection is created to the remote port air_port of partner near. The program

can send messages there through the channel chan(airlink). The send opeartion will be

synchronized with the receiver.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

CS-Prolog Networking Interface

46

instantiation_error

Partner, Port, Channel, or Buffering is a variable, or Channel contains a variable.

type_error(atom, Name)

Name is neither an atom nor a variable.

domain_error(explicit_netobj_name, Name)

Name is an atom, but not valid as a user-specified name for a net object (it is nil, or begins with ‘$’, or its

length exceeds the maximum allowed for network object names (31)).

type_error(atom, Partner)

Partner is neither a variable nor an atom.

existence_error(netobject, Partner)

There is no partner with name Partner. ErrInfo-Other will be the atom partner.

type_error(atom, Port)

Port is neither a variable nor an atom.

domain_error(unique_name, Channel)

Channel is not a valid unique name.

type_error(integer, Buffering)

Buffering is neither a variable nor an integer.

domain_error(not_less_than_zero, Buffering)

Buffering is an integer less than zero.

permission_error(create, netobj_name, Name)

Name is already the name of an existing connection. ErrInfo-Other will be the atom connection.

permission_error(open, channel, Channel)

The channel Channel is already opened for receive. ErrInfo-Other will be the atom already_open

permission_error(open, channel, Channel)

The channel Channel is opened for send by a port or a dock. ErrInfo-Other will be the atom

already_network.

Chapter 8: Networking built-in predicates

47

dock_create/2

dock_create/3

dock_create/4

Description

dock_create(Name, Channel)

dock_create(Name, Channel, Buffering)

dock_create(Name, Channel, Buffering, EndMarker)

Create a new dock with name Name, which will feed messages into Channel when it is

attached to a mediator attached to a foreign partner. If Name is a variable a new unique dock

name atom is generated by the system and it is unified with the variable. The newly created

dock will be free until it is attached to a mediator

Buffering specifies the maximum number of unprocessed messages buffered for the dock.

Value of 0 means that the dock will accept a message from a remote connection if the

previous one from the same connection (if any) has been consumed. Positive Buffering value

is an advice to the CS-Prolog system, that it may accept more than one message from a remote

connection. The default value for Buffering is 0. Buffering value is stored in the modifiable

dock attribute buffering_limit.

EndMarker can be on or off. If its value is on, the system inserts a special message when

the conversation with the foreign partner connected to the dock is closed or broken. The

format of this message is end_of_message_stream(Mode) where Mode is the

disconnection mode (network errors imply force), or, in the case of a dock attached to an

ascii mediator, the atom end_of_message_stream. If the value off is specified for

EndMarker, or if this parameter is omitted, no terminating message is inserted.

Template and modes

dock_create(?netobj_name_atom, +channel)

dock_create(?netobj_name_atom, +channel, +integer)

dock_create(?netobj_name_atom, +channel, +integer, +option)

Examples

dock_create(dock1, dch1).

A non-buffering dock is created.

dock_create(eric_dock, eric_chan, 12, on).

A dock is created, which may store up to 12 unprocessed messages. When the conversation

with the foreign partner connected to this dock is terminated, an end of message stream term

will be inserted for the dock.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

CS-Prolog Networking Interface

48

instantiation_error

Channel, Buffering, or EndMarker is a variable, or Channel contains a variable.

type_error(atom, Name)

Name is neither an atom nor a variable.

domain_error(explicit_netobj_name, Name)

Name is an atom, but not valid as a user-specified name for a net object (it is nil, or begins with ‘$’, or its

length exceeds the maximum allowed for network object names (31)).

type_error(integer, Buffering)

Buffering is neither a variable nor an integer.

domain_error(not_less_than_zero, Buffering)

Buffering is an integer less than zero.

type_error(atom, EndMarker)

EndMarker is neither a variable nor an atom.

domain_error(option, EndMarker)

EndMarker is an atom, but not a valid option (off or on).

permission_error(create, netobj_name, Name)

Name is already the name of an existing dock. The ErrInfo-Other will be the atom dock.

domain_error(unique_name, Channel)

Channel is not a valid unique name.

permission_error(open, channel, Channel)

The Channel channel is already opened for send. The ErrInfo-Other will be the atom already_open

permission_error(open, channel, Channel)

The Channel channel is opened for receive by a connection. The ErrInfo-Other will be the atom

already_network.

Chapter 8: Networking built-in predicates

49

dock_close/1

dock_close/2

Description

dock_close(Name)

dock_close(Name, Mode)

Deletes the dock with name Name in mode Mode. Only an unattached dock can be closed

(free, zombie, or the partner with which the dock is associated is zombie). Closing a free or

zombie dock succeeds immediately. Otherwise in graceful mode the destruction of the

dock will be delayed until all unprocessed messages are received by the program. In force

mode the destruction is immediate, the unconsumed messages in the dock’s buffer (and

messages on their way on network channels) are discarded. The default close mode is

graceful.

When dock_close/1 succeeds the attached channel is closed; it becomes available for opening

for send by any process. At completion of graceful dock closing the system sends an alert

informing the program about this event.

It is not allowed to close a dock gracefully more than once.

For more details see: 4.5

Template and modes

dock_close(+atom)

Examples

dock_close(dock1).

The dock is destroyed without sending an alert.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

Name is a variable.

type_error(atom, Name)

Name is neither a variable nor an atom.

existence_error(netobject, Name)

There is no dock with name Name. ErrInfo-Other will be the atom dock.

permission_error(remove, netobject, Name)

The dock is not free (it is associated with an active partner - through a mediator) The ErrInfo-Other will be

the list [dock, engaged].

CS-Prolog Networking Interface

50

connect_to_dock/4

connect_to_dock/5

Description

connect_to_dock(Name, Partner, Dock, Channel)

connect_to_dock(Name, Partner, Dock, Channel, Buffering)

Create a new connection with name Name, which will forward messages fed into Channel to

the dock Dock of partner Partner. If Name is a variable the system generates a new unique

connection name atom, which is unified with Name. If Partner is in initial state the action is

suspended until the net connecting process to the partner completes (and partner’s status

becomes normal). Dock can be specified as nil in which case the default dock of the

foreign partner is the target of the connection. The existence of the dock is checked on the

partner’s side. If either the partner is or becomes zombie, or the requested dock does not exist

at the partner, then the new connection's status is set to zombie and optionally an alert is

generated.

Buffering specifies the maximum number of messages stored in the connection object waiting

to be sent (the permission comes from the remote dock). A value of 0 means that the

connection will accept only one message and the send operation will be blocked until the

addressee on the other side receives the message and acknowledges the receipt (the send is

synchronized). When positive buffering value is given, the send operation will not block as

long as there is space in the message buffer and the number of unsent messages does not

exceed Buffering. In this case send is not synchronized. Buffering value is stored in the

modifiable connection attribute buffering_limit. However, the zero-ness of this

attribute cannot be changed later, i.e., if it is zero, it cannot be changed to non-zero and

similarly non-zero cannot be changed to zero.

The program is optionally informed about success or failure of a connect_to_dock call by an

appropriate alert.

Template and modes

connect_to_dock(?netobj_name_atom, +atom, +atom, +channel)

connect_to_dock(?netobj_name_atom, +atom, +atom, +channel,

 +integer)

Examples

connect_to_dock(CONNAME, stranger, [], chan(1)).

A new connection is created to the default dock of foreign partner stranger. The program

can send messages there through the channel chan(1). The send opeartion will be

synchronized with the receiver. The variable CONNAME will be instantiated with the

system-generated name of the new connection.

Chapter 8: Networking built-in predicates

51

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

Partner, Dock, Channel, or Buffering is a variable, or Channel contains a variable.

type_error(atom, Name)

Name is neither an atom nor a variable.

domain_error(explicit_netobj_name, Name)

Name is an atom, but not valid as a user-specified name for a net object (it is nil, or begins with ‘$’, or its

length exceeds the maximum allowed for network object names (31)).

permission_error(create, netobj_name, Name)

Name is already the name of an existing connection. The ErrInfo-Other will be the atom connection.

type_error(atom, Partner)

Partner is neither a variable nor an atom.

existence_error(netobject, Partner)

There is no partner with name Partner. ErrInfo-Other will be the atom partner.

type_error(atom, Dock)

Dock is neither a variable nor an atom.

domain_error(unique_name, Channel)

Channel is not a valid unique name.

type_error(integer, Buffering)

Buffering is neither a variable nor an integer.

domain_error(not_less_than_zero, Buffering)

Buffering is an integer less than zero.

permission_error(create, netobj_name, Name)

Name is already the name of an existing connection. ErrInfo-Other will be the atom connection.

permission_error(open, channel, Channel)

The channel Channel is already opened for receive. ErrInfo-Other will be the atom already_open

permission_error(open, channel, Channel)

The channel Channel is opened for send by a port or a dock. ErrInfo-Other will be the atom

already_network.

CS-Prolog Networking Interface

52

disconnect/1

disconnect/2

Description

disconnect(Name)

disconnect(Name, Mode)

Destroy the connection with name Name in mode Mode. The local channel is closed at once.

In graceful mode the completion of disconnect is delayed until all messages remaining on

the connection’s buffer are delivered to the receiver. At the end the connected port (of the

partner) is informed about disconnection and the connection object is deleted. In force mode

the disconnect is immediate, the remote port is informed, but the pending messages in the

connection’s buffer (and messages on their way on the network) are discarded. The default

disconnect mode is graceful.

When a graceful disconnect/[1,2] succeeds the system optionally sends an alert informing the

program. It is not allowed to disconnect a particular connection gracefully more than once.

For more details see: 4.5

Template and modes

disconnect(+atom)

disconnect(+atom, +net_close_mode_option)

Examples

disconnect(airlink, force).

The connection is disconnected without delay. Messages waiting to be delivered are discarded.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

Name or Mode is a variable.

type_error(atom, Name)

Name is neither a variable nor an atom.

existence_error(netobject, Name)

There is no connection with name Name. ErrInfo-Other will be the atom connection.

type_error(atom, Mode)

Mode is neither a variable nor an atom.

domain_error(net_close_mode_option, Mode)

Mode is an atom, but not a valid close mode.

permission_error(remove, netobject, Name)

Graceful disconnect for the connection with name Name is already in progress The ErrInfo-Other will be the

list [connection, repeated].

Chapter 8: Networking built-in predicates

53

community_current_attribute/3

partner_current_attribute/3

port_current_attribute/3

dock_current_attribute/3

connection_current_attribute/3

mediator_current_attribute/3

Description

community_current_attribute(ObjName, AttrName, Value)

partner_current_attribute(ObjName, AttrName, Value)

port_current_attribute(ObjName, AttrName, Value)

dock_current_attribute(ObjName, AttrName, Value)

connection_current_attribute(ObjName, AttrName, Value)

mediator_current_attribute(ObjName, AttrName, Value)

These predicates serve for retrieving or checking attribute values of network objects. Each

argument can be a variable. If ObjName is not a variable then it has to be the name of a

network object of appropriate type (community, partner, port, or connection, respectively). If

AttrName is not a variable then it has to be a valid attribute name for the object type. If

AttrName and Value both are instantiated, then Value has to be a value valid for this

attribute. The network attributes are listed in section 5.

These predicates generate all O, A, V triplets that are object names, attribute names for the

given object type and their associated values, and unify ObjName with O, AttrName with A

and Value with V. The predicates are resatisfiable, on backtrack they unify all O, A, V triplets

with ObjName, AttrName and Value. The used set of O, A, V values is frozen in the

moment of the call. So if between two succeedings of the predicates an attribute value is

modified, this change does not appear in the result.

At present the name of the (single) community is a fixed atom: community.

Template and modes

community_current_attribute(?atom, ?attr_name, ?attr_value)

partner_current_attribute(?atom, ?attr_name, ?attr_value)

port_current_attribute(?atom, ?attr_name, ?attr_value)

dock_current_attribute(?atom, ?attr_name, ?attr_value)

connection_current_attribute(?atom, ?attr_name, ?attr_value)

mediator_current_attribute(?atom, ?attr_name, ?attr_value)

CS-Prolog Networking Interface

54

Examples

port_current_attribute(X, advertised, on).

Unifies X with an advertised port name. On backtrack all such port names will be enumerated.

partner_current_attribute(near, port_names, L).

Unifies L with the list of port names advertised by partner near.

partner_current_attribute(S, self, true),

 (partner_current_attribute(S, X, Y),

 format(’[~a~25|~q~n’, [X,Y]), fail;

 true

).

Writes out all attributes and attribute values for the self partner.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

type_error(atom, ObjName)

ObjName is neither a variable nor an atom.

existence_error(netobject, ObjName)

ObjName is instantiated and there is no network object of the pertinent type with name ObjName. ErrInfo-

Other will be the atom representing the object type.

domain_error(net_attribute, AttrName)

AttrName is instantiated but it is not a valid attribute name for the given object type.

domain_error(net_attr_value, AttrName+Value)

AttrName and Value are instantiated but Value is not a proper attribute value for AttrName.

Chapter 8: Networking built-in predicates

55

community_current_attribute/4

partner_current_attribute/4

port_current_attribute/4

dock_current_attribute/4

connection_current_attribute/4

mediator_current_attribute/4

Description

community_current_attribute(ObjName, AttrName, Value,

 Mode)

partner_current_attribute(ObjName, AttrName, Value, Mode)

port_current_attribute(ObjName, AttrName, Value, Mode)

dock_current_attribute(ObjName, AttrName, Value, Mode)

connection_current_attribute(ObjName, AttrName, Value,

 Mode)

mediator_current_attribute(ObjName, AttrName, Value,

 Mode)

These predicates are generalizations of predicates having the same name and arity of 3. Each

of the first three arguments plays the same role as in the corresponding predicate of arity 3.

Mode can be conditional or unconditional. Unconditional current attribute

retrieval has the same effect as described for predicates with 3 arguments. In conditional

mode, however, if either the network is uninitialized or ObjName is not variable but there is

no object with name ObjName, then these predicates simply fail instead of signaling an

exception as their counterparts do.

Template and modes

community_current_attribute(?atom, ?attr_name,

 ?attr_value, +predicate_mode)

partner_current_attribute(?atom, ?attr_name,

 ?attr_value, +predicate_mode

port_current_attribute(?atom, ?attr_name,

 ?attr_value, +predicate_mode

dock_current_attribute(?atom, ?attr_name,

 ?attr_value, +predicate_mode

connection_current_attribute(?atom, ?attr_name,

 ?attr_value, +predicate_mode)

mediator_current_attribute(?atom, ?attr_name,

 ?attr_value, +predicate_mode)

CS-Prolog Networking Interface

56

Examples

port_current_attribute(air_port, status, S, conditional).

Unifies S with the status of the given port if the port exists. Otherwise the predicate fails.

Errors

system_error

Mode is unconditional and the community is not initialized. ErrInfo-Other will be the atom

community_not_initialized.

type_error(atom, ObjName)

ObjName is neither a variable nor an atom.

existence_error(netobject, ObjName)

Mode is unconditional, ObjName is instantiated and there is no network object of the pertinent type with

name ObjName. ErrInfo-Other will be the atom representing the object type.

domain_error(net_attribute, AttrName)

AttrName is instantiated but it is not a proper attribute name for the given object type.

domain_error(net_attr_value, AttrName+Value)

AttrName and Value are instantiated but Value is not a proper attribute value for AttrName.

domain_error(not_less_than_zero, Value)

Value is a negative integer but for the associated attribute only non-negative values are valid.

Chapter 8: Networking built-in predicates

57

community_set_attribute/3

partner_set_attribute/3

port_set_attribute/3

dock_set_attribute/3

connection_set_attribute/3 mediator_set_attribute/3

Description

community_set_attribute(ObjName, AttrName, Value)

partner_set_attribute(ObjName, AttrName, Value)

port_set_attribute(ObjName, AttrName, Value)

dock_set_attribute(ObjName, AttrName, Value)

connection_set_attribute(ObjName, AttrName, Value)

mediator_set_attribute(ObjName, AttrName, Value)

These predicates change the value of a modifiable attribute of a network object (see section 5).

Template and modes

community_set_attribute(+atom, +attr_name, +attr_value)

partner_current_attribute(+atom, +attr_name, +attr_value)

port_current_attribute(+atom, +attr_name, +attr_value)

connection_current_attribute(+atom, +attr_name, +attr_value)

Examples

port_set_attribute(air_port, advertised, off).

The publicity status of air_port is set to off. It will be removed from the corresponding

partner objects’ port_names attribute value at those remote communities where our

application is configured as partner.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

instantiation_error

ObjName, AttrName, or Value is a variable.

type_error(atom, ObjName)

ObjName is neither a variable nor an atom.

existence_error(netobject, ObjName)

There is no network object of the specified type with name ObjName. ErrInfo-Other will be the atom

representing the object type.

domain_error(net_attribute, AttrName)

AttrName is not a proper attribute name for the given object type.

CS-Prolog Networking Interface

58

domain_error(net_attr_value, AttrName+Value)

Value is not a proper attribute value for AttrName.

domain_error(not_less_than_zero, Value)

Value is a negative integer but for the associated attribute only non-negative values are valid.

permission_error(modify, net_attribute, AttrName)

AttrName is a read only attribute.

permission_error(modify, net_buffering_limit, Value)

Value is an illegal change of the buffering limit attribute of a connection. (Non-zero values cannot be changed

to zero, and zero value cannot be changed to non-zero.)

Chapter 8: Networking built-in predicates

59

ask_manager/3

Description

ask_manager(ObjName, AttrName, Value)

The purpose of this predicate is to obtain information from the network directory service (at

present provided only by the HNMS partner) about peer applications connected to the same

subnetwork manager. The relevant data about each such application is stored in a

corresponding instance of a special object type named NetPeer. These objects are not (and

cannot be) created by the program; they are maintained by the system. Individual NetPeer

instances appear and disappear as the configuration of the HNMS community changes. The

name of the objects is always system-generated, and has no inherent meaning. It can be used

only for associating the individual attribute values for a particular peer application with each

other.

Because of the ephemeral nature of the NetPeer objects, the ask_manager/3 predicate works

in the same manner as the conditional mode querying predicates do, i.e., it simply fails if the

object explicitly specified by the (non-variable) ObjName argument does not exist. Except for

the assumed conditional mode the predicate behaves exactly as any other from the querying

predicates group.

Each argument can be a variable. If ObjName is not a variable then it has to be the name of a

NetPeer object instance (obtained from a previous ask_manager query or an alert). If

AttrName is not a variable then it has to be a valid attribute name for the NetPeer object

type. If AttrName and Value both are instantiated, then Value has to be a value valid for this

attribute. The NetPeer attributes are listed in section 5.

The predicate generates all O, A, V triplets that are object names, attribute names for the

NetPeer instances and their associated values, and unify ObjName with O, AttrName with A

and Value with V. The predicate is resatisfiable, on backtrack it unifies all O, A, V triplets

with ObjName, AttrName and Value. The used set of O, A, V values is frozen in the

moment of the call. So if between two succeedings of the predicate an attribute value is

modified, this change does not appear in the result.

Note that NetPeer instances may exist only when the HNMS partner has normal status.

Template and modes

ask_manager(?atom, ?attr_name, ?attr_value)

Examples

ask_manager(X, host_name, central).

Unifies X with the system-generated object name of a NetPeer object describing a peer

application (intelligent agent) running on the host named central, if the HNMS partner is

running, is connected to the HNMS server and has information about such a peer. Othewise

the predicat fails. On backtrack all such instances will be enumerated.

CS-Prolog Networking Interface

60

ask_manager(O, ip_addr, A).

Unifies A with the internet address of a peer application, O with the system-assigned name of

the NetPeer object instance describing that peer, if such a peer is known. On backtrack all

such addresses will be enumareted.

ask_manager(O, host_name, central),

 (ask_manager(O, port_names, L),

 ask_manager(O, ip_port, P),

 format(’[~a~25|~q~n’, [P,L]), fail;

 true

).

Writes out the tcp/ip port number and the list of the advertised port names for all peer

applications running on the host central.

Errors

system_error

The community is not initialized. ErrInfo-Other will be the atom community_not_initialized.

type_error(atom, ObjName)

ObjName is neither a variable nor an atom.

domain_error(net_attribute, AttrName)

AttrName is instantiated but it is not a valid attribute name for the NetPeer object type.

domain_error(net_attr_value, AttrName+Value)

AttrName and Value are instantiated but Value is not a proper attribute value for AttrName.

Chapter 9: Changes in existing predicates

61

9. Changes in existing predicates

Extending CS-Prolog with network communication required changes in the behavior of the

already defined predicates. It also meant introduction of additional functionality accessed by

new arguments. (The changes are incorporated in Version 2.1 of the User’s Manual).

The following parallel programming built-in predicates are affected:

receive/[2,3]

test_channel/2

channel_list/1

An optional argument of receive can be used to obtain information about the originator of a

message received from the network.

The channel state record had to be extended to cover the situation when one end of the

channel is used for external communication. (Channel state records are referred to in

test_channel/2 and channel_list/1.)

CS-Prolog Networking Interface

62

receive/4

Description

receive(Channel_name, Variable, Winner_channel, Rem_Conn)

The first three arguments of the predicate have the same role as in receive/3. The Rem_Conn

argument provides information about the sender. It has to be an unbound variable. If the

transfer was local then this variable is unified with nil. Otherwise, when the transfer involved

the network, the following list is unified with Rem_Conn:

[[ip_addr(Ipaddr), ip_port(Tcp_Port)], Connection_Name]

Ipaddr and Tcp_port give the full TCP/IP address of the remote application, and

Connection_Name is the name of the sending remote connection. The net address is

returned in Rem_Conn because the sender application may be an unsolicited partner having

no partner representation. If it is an explicit partner, its name can be retrieved using the

partner_current_attribute predicate.

Template and modes

receive(@chanspec, -term, -channel, -term)

Examples

receive(ch(air_port), Mess, _, Sender),

 Sender = [_, airlink].

Receives a message and then checks whether it had been sent from a remote connection

named airlink.

receive(ch(air_port), Mess, _, Sender),

 Sender = [[ip_addr(IA), ip_port(TP], _],

 partner_current_attribute(near, ip_addr, IA),

 partner_current_attribute(near, ip_port, TP).

Receives a message and checks whether it had been sent from a partner named near.

Errors

 (only the new error for the Rem_Conn argument)

type_error(variable, Rem_Conn)

The Rem_Conn argument is not a variable.

Chapter 9: Changes in existing predicates

63

test_channel/2

Description

test_channel(Channel_name, Channel_state_record)

The description of this predicate is the same as in CS-Prolog II User’s Manual with the

following extension. The fact that one end of the channel is owned by a network object is

reflected in the Sender_process or Receiver_process members of the Channel_state_record

argument. These members are unified with the list:

[port, Port_Name]

or

[connection, Connection_Name]

depending on the network object type the channel is linked to. Port_Name or

Connection_Name is the name of the network object.

CS-Prolog Networking Interface

64

10. Implementation-defined limits and constants

Name of the (unique) community object: community

Maximal number of network connections at any one time: 30

Maximal length of network object names: 31

Default ip_port number: 5130

Default retry delay period: 6000 (hundredth sec’s)

Maximal length of a message sent to a foreign partner 16382 (16K - 2) bytes

Maximal summary length of string data for a NetPeer object 370 bytes

Chapter 11: APPENDIX A — MEDIATORS AVAILABLE

65

11. APPENDIX A — MEDIATORS AVAILABLE

11.1 The ascii mediator for plain text communication

This mediator, which is integrated with the network driver, should be used in communicating

with server-like partners that

 accept network connection at a pre-defined (well-known) port using either TCP/IP

or UDP/IP protocol;

 receive and send plain ascii text lines (of limited length).

The mnemonic identifier for creating a mediator of this kind is the atom ascii.

The mediator performs the following transformations and poses the following restrictions.

Outgoing messages:

The term sent to the channel is converted to external representation, as by the 'write'

predicate, and a newline character is appended to the result. The resulting character

string is then forwarded to the partner.

The length of this string cannot be larger than 16K - 2 bytes.

Note: If there are embedded newline characters inside the string, the partner probably

will handle each part as a separate line.

As for message synchronization, a message sent is considered as accepted by the

remote partner at the moment when the mediator passed the last character of it to the

network (maybe after a period of the message staying buffered).

Incoming messages:

The character stream arriving from the partner is divided into individual lines. If a line

is longer than the maximal atom length allowed in CSP (4095 characters), than that

line is further split into parts (so that each part except perhaps the last one has the

maximal length allowed). The 'receive' predicates get the next consecutive part

converted to a prolog atom (without the terminating newline character).

When the conversation is terminated gracefully (because of the partner's removal, or

because of networking error, or maybe the remote partner decides to close the

communication), optionally an end_of_message_stream atom is inserted as the

last message to be received, under control of the EndMarker attribute specified or

assumed when the receiving dock was created.

CS-Prolog Networking Interface

66

11.2 The hnms mediator for communication with the HNMS server

This mediator has a separate executable component named csphnmsd.

The mnemonic identifier for creating a mediator of this kind is the atom hnms.

In contrast to the rather general ascii mediator, the hnms mediator is quite specific, with a

specific set of rules. It provides two distinct services.

One is the directory service. The mediator — after it had contacted the HNMS server —

keeps track of all peer CSP applications connected to the same HNMS server and makes the

relevant data available via the ask_manager/3 predicate.

The other service is user controlled message exchange with the HNMS server, consisting of

sending HNMS-specific commands and receiving data sent by the HNMS server as instructed

by these commands (subscription results and replies to simple queries).

The format of these messages is regulated by the requirements and capabilities of the HNMS

server. The additional restriction posed by the mediator is that the external representation of

the Prolog terms constituting the 'query' messages must not be longer than 16K - 2 bytes.

When the HNMS partner is created successfully, it launches the so called hnms driver (as a

separate unix process) and passes it some parameters. Among these there are the value of the

hostname attribute of the partner object and the flag1 and flag2 attributes of the attached

mediator. The driver then tries to contact the HNMS server, using the received hostname

value to locate the host machine where the server should be running, and the flag2 value for

the name of HNMS community supported by that server, or the normal default value for either

of these if the corresponding item is not explicitly specified. The default community name is

assumed also when flag2 is explicitly given as the empty string.

In the present implementation the actual network address of the HNMS server is not made

available for the application program. Instead of the actual address fictive values are used for

identification purposes (e.g., as partner attribute values): ‘0.0.0.0’ for ip_addr and

65535 as (UDP) ip_port, which are otherwise invalid.

When the contact with the server is established, the driver begins to collect information about

the subnetwork managed by the server (from messages received from the server). The value of

the flag1 attribute received from the parent process controls the eventual automatic

subscriptions requested when an object of the appropriate type is recognized.

At present this flag can be an atom (string) composed of the letters a, i, p, and r. Each letter

can be included at most once. (Examples of valid values: '', 'pi', 'ipra'.)

The effect of the individual letters included is the same as that of the corresponding command

line switch specified for the hnmstool program.

The interface for sending requests to, and receiving responses from, the driver is modeled after

the hnmstool command interface, but only a subset of the functions is implemented.

Both requests and responses are handled as Prolog terms of specific structure, sent and

received as CSP messages. For the sake of compactness, a semi-formal syntax description is

used to define the simple 'language' that generates/recognizes these terms.

Chapter 11: APPENDIX A — MEDIATORS AVAILABLE

67

11.2.1 Syntax notation

<REQUEST> ::= list |

 show(<ObjDesc>) |

 translate(<OidIn>) |

 subscribe(<ObjDesc>, <VarSubList>) |

 unsubscribe(<ObjDesc>) |

 get(<ObjDesc>, <VarDesc>) |

 getnext(<ObjDesc>, <VarDesc>) |

 walk(<ObjDesc>, <VarDesc>)

<REPLY> ::= response(<ObjDesc>, <ValueList>) |

 showing(<ObjDesc>, <ValueList>, <ComplInd>) |

 translation(<OidIn>, <OdeOut>, <TypeCode>) |

 objects(<ObjDescList>, ComplInd) |

 rejected(<REQUEST>, <ErrDiag>) |

 overrun(<Ts1>, <Ts2>, <Count>) |

 end_of_message_stream(<F>)

<VarSubList> ::= [<VarSubItem>, ...]

<ValueList> ::= [<ValueItem>, ...]

<ObjDescList> ::= [<ObjDesc>, ...]

<VarSubItem> ::= [<VarDesc>, <Interval>]

<ValueItem> ::= [<VarDesc>, <TypeCode>, <Value>, <Ts>]

<ObjDesc> ::= <class> : <object_name>

<VarDesc> ::= <MIB_VARIABLE>

<OidIn> ::= <MIB_VARIABLE>

<OdeOut> ::= <MIB_VARIABLE>

<Ts> ::= <TIMESTAMP>

<Ts1> ::= <TIMESTAMP>

<Ts2> ::= <TIMESTAMP>

<ComplInd> ::= complete | continuing | last

<F> ::= force | graceful

<Value> ::= ATOM | INTEGER | FLOAT

<class> ::= ATOM

<object_name> ::= ATOM

<MIB_VARIABLE> ::= ATOM

<ErrDiag> ::= ATOM

<TypeCode> ::= INTEGER

<Count> ::= INTEGER

<Interval> ::= INTEGER | FLOAT

<TIMESTAMP> ::= FLOAT

CS-Prolog Networking Interface

68

11.2.2 Explanation of the syntax

ATOM, INTEGER, and FLOAT denote Prolog atom, integer, and float number, respectively.

<TIMESTAMP> is the CS-Prolog II compact representation of a date/time value. It is a

floating point value showing the number of days between the designated time-point and the

base date fixed for CS-Prolog. (More detailed description of this data/time representation can

be found in the accompanying volume about the data base interface extension to CS-Prolog II)

The shorthand notation
 [<Item>, ...]

stands for non-empty prolog lists.

<Interval> is the interval in hundredth of seconds specified for a periodic subscription.

In this case we differ from hnmstool (and from the HNMS specification in general) where

interval is given in seconds. In CS-Prolog II, however, time intervals are uniformly expressed

in hunsecs, so we adhere to this convention. In actual use the specified interval is rounded up

to the nearest second.

<MIB_VARIABLE> is any acceptable representation of a MIB variable as a Prolog atom.

(Optional symbolic prefix followed by an optional dot-separated node-list, where both parts

cannot be empty.) HNMS always returns the representation with the shortest node-list based

on its stored MIB-subtree.

<Value_item> represents MIB variable values as a quadruple consisting of the name of the

variable (Ode), its defined type, the associated value and the timestamp when this value had

been registered.

The <TypeCode> mapping and the Prolog representation of the associated value is the

following:

TypeCode HNMS mnemonic Prolog term

1 MIB_integer INTEGER or FLOAT

2 MIB_enum INTEGER

3 MIB_timeticks INTEGER or FLOAT

4 MIB_counter INTEGER or FLOAT (positive)

5 MIB_gauge INTEGER or FLOAT

6 MIB_ipaddr ATOM (standard Internet dot address)

7 MIB_octetstring ATOM

8 MIB_displaystring ATOM

9 MIB_oid ATOM (<MIB_VARIABLE>)

10 MIB_null ATOM ('')

11 MIB_sequence (Not returned)

12 MIB_regpoint (Not returned)

13 MIB_other (Not returned — unknown in HNMS)

Chapter 11: APPENDIX A — MEDIATORS AVAILABLE

69

In four cases above 'INTEGER or FLOAT' is indicated as the Prolog representation. This

means that the term type depends on the actual value. If the value is in the CSP integer range,

then it is returned as CSP integer, otherwise as CSP float.

For more exact details on MIB, hnmstool, e.t.c., see the HNMS system documentation.

11.2.3 Semantics

The application program may send <REQUEST> terms to the hnms driver using send/2.

The driver interprets each request and either accepts or rejects it. If the request is accepted,

there are again two possibilities:

If the driver can handle the request alone, then an appropriate <RESPONSE> is composed and

sent back immediately to the receiving dock.

Otherwise, if the HNMS server is involved, the request is translated into a HNMP message

and that massage is forwarded to the HNMS server. The server processes the request and

eventually will send some HNMP messages back that can be considered as ‘reply’. Replies can

be related to requests only by their content. The hnms driver translates each such HNMP

message into a <REPLY> term and sends it to the receiving dock.

Two queries (list and show) can produce very large replies, which are larger than any

message received from the HNMS server (they are evaluated locally). If this would be the

case, the response to the query is returned in several parts. The last argument in both is a

completeness indicator (<ComplInd>). The value complete in this position indicates that

the whole response is contained in this one message; continuing indicates a message from

a sequence of a multipart response which is not the last one; last indicates the last message

from such a sequence.

The normal correspondence between <REQUEST> and <REPLY> is the following:

<REQUEST> functor name <REPLY> functor name

list objects

show showing

translate translation

subscribe response (periodically or at change)

unsubscribe N/A

get response

getnext response

walk response

where the <REQUEST> functor names are the same as the respective HNMP function names.

CS-Prolog Networking Interface

70

Special messages received as <REPLY>:

1. If the hnms driver has any problem in translating the <REQUEST>, it returns a

rejected reply, composed of the original request and a diagnostic term <ErrDiag>.

At present, <ErrDiag> is a simple atom; later on this can be elaborated in more detail.

The defined values are summarized in the following table:

<ErrDiag> value Reason

unknown_request Unrecognized main functor of <REQUEST>

invalid_arity Improper number of arguments in <REQUEST>

not_ground_term Uninstantiated variable in <REQUEST>

type_mismatch Violation of the syntax rules for atomic type

invalid_subterm Non-list subterm where list is expected, or

<ObjDesc> is not a ':/2' structure

invalid_sublist Invalid member count in fixed-length sublist, or

empty <VarSubList>

unknown_object No object for <ObjDesc> found (might have been

deleted)

Chapter 11: APPENDIX A — MEDIATORS AVAILABLE

71

<ErrDiag> value Reason

unknown_variable_oid <VarDesc> is invalid

value_error Numeric value is out of range (<Interval>

converted to seconds is negative or larger than

UINT_MAX)

2. If the application does not consume the responses quickly enough, the internal buffers of

the hnms driver will be filled, and some responses produced in this state will be discarded.

The driver keeps track of the number of discarded messages and retains the timestamp of

the first and last such response. When 'enough' buffer space becomes available again, the

admission of new responses is resumed, and an overrun message is inserted at the place

of the discarded ones in order to let the application know about the situation. The overrun

message contains the count and the timestamps mentioned.

3. 3. If the dock associated (indirectly, via the mediator) with the HNMS partner specifies

EndMarker insertion, then the customary end_of_message_stream(F) term is

appended to the stream of responses when the HNMS partner is closed.

11.2.4 Notes

1. HNMS silently discards any message which is larger than its internal output buffer after

transformation (16K).

2. Subscription is not incremental, in spite of the specification. A new subscription for an

object replaces the older one. This relates to the automatic subscription, too.

3. HNMS message passing is not order-preserving. This means that you should not make any

assumptions about the order of expected replies based on the order of the respective

requests.

Three queries (translate, list, show), however, are evaluated locally within the

driver and they are order preserving. Also if list or show produces multi-part reply, the

parts are received without any intervening reply of other kind. (But parts can be lost due to

overrun.)

4. In the case when multi-part response is possible, splitting occurs much earlier than strictly

necessary in order to avoid very large terms.

5. There is a conflict in the interpretation of the auto-subscribe flags when used together:

'a' subscribes to change; 'i' replaces this by interval subscription (for the MIB variable

hnmsObjReachStatus.0).

6. If there are multiple entries in a subscription list for the same MIB variable, then the first

one takes effect; the rest are ignored.

7. Flow control: There are three levels of saturation: normal, high, congested.

In normal state everything goes smoothly; in high level saturation state acknowledgments

to received requests are held back, but responses are still produced. In congested state

acknowledgments are held back, too, and responses are discarded. When the saturation

CS-Prolog Networking Interface

72

level returns to normal from high, withheld acknowledgments are released. If there was a

congested state in the meantime, then an overrun report is inserted into the output stream

(at the place where the discarded messages should have been enqueued), and response

generation is resumed.

8. rejected responses are not discarded on saturation.

9. In the present implementation the capability of the directory service is restricted: the total

length of the data describing a net-peer must not exceed 384 bytes (the allowed length for

string values in HNMS). Of this size 14 bytes are used internally and for the port number,

370 bytes remain for hostname, description, and the advertised portnames (with

terminating null character included in each).

10. The directory service relies upon the specific behavior of the send_relations and

subscribe_relatons HNMP functions in HNMS version 2.0 implementation, which differs

from the specification. If this anomaly happens to be corrected in future releases, the

current hnms driver becomes unusable.

Chapter 11: APPENDIX A — MEDIATORS AVAILABLE

73

Index of networking built-in predicates

ask_manager/3 60

community_activate/1 33

community_change_config/2.............. 35

community_current_attribute/3 54

community_current_attribute/4 56

community_init/5 31

community_set_attribute/3 58

community_shut/1 37

connect_to_dock/4 50

connect_to_dock/5 50

connect_to_port/4 45

connect_to_port/5 45

connection_current_attribute/3 54

connection_current_attribute/4 56

connection_set_attribute/3 58

disconnect/1 52

disconnect/2 52

dock_close/1 49

dock_close/2 49

dock_create/2 47

dock_create/3 47

dock_create/4 47

dock_current_attribute/3 54

dock_current_attribute/4 56

dock_set_attribute/3 58

mediator_close/1 40

mediator_create/3 38

mediator_create/4 38

mediator_create/5 38

mediator_current_attribute/3 54

mediator_current_attribute/4 56

mediator_set_attribute/3 58

partner_current_attribute/3 54

partner_current_attribute/4 56

partner_set_attribute/3 58

port_close/1 43

port_close/2 43

port_create/2 41

port_create/3 41

port_create/4 41

port_create/5 41

port_current_attribute/3..................... 54

port_current_attribute/4..................... 56

port_set_attribute/3 58

receive/4 .. 63

test_channel/2 64

NOTES

75

NOTES

76

	1. Introduction
	2. Networking concepts
	3. Basic networking notions
	3.1 Network objects
	3.1.1 Community
	3.1.2 Partner
	3.1.3 Mediator
	3.1.4 Port
	3.1.5 Dock
	3.1.6 Connection
	3.1.7 NetPeer

	3.2 Alerts
	3.3 Network picture

	4. Network programming
	4.1 Initializing the community
	4.2 Creating ports
	4.3 Configuring partners
	4.4 Connecting to partners
	4.5 Closing activities
	4.6 Working with foreign partners
	4.7 Status changes of network objects
	4.8 Attribute handling

	5. Object attributes
	5.1 Community attributes
	5.2 Partner attributes
	5.3 Mediator attributes
	5.4 Port attributes
	5.5 Dock attributes
	5.6 Connection attributes
	5.7 NetPeer attributes

	6. Alerts
	6.1 Community related alerts
	6.2 Partner related alerts
	6.3 Port and Dock related alerts
	6.4 Connection related alerts
	6.5 NetPeer related alerts

	7. Exception terms
	8. Networking built-in predicates
	9. Changes in existing predicates
	10. Implementation-defined limits and constants
	11. APPENDIX A — MEDIATORS AVAILABLE
	11.1 The ascii mediator for plain text communication
	11.2 The hnms mediator for communication with the HNMS server
	11.2.1 Syntax notation
	11.2.2 Explanation of the syntax
	11.2.3 Semantics
	11.2.4 Notes

