

CS-Prolog II

Version 2.3

User's Manual

ML Consulting and Computing Ltd.

Budapest, Hungary

January, 1999

8 January 1999

The information in this document is subject to change without notice and should not be construed as a

commitment by ML Consulting and Computing Ltd. ML Consulting and Computing Ltd. does not assume any

responsibility for any errors that may appear in this document.

Copyright 1997, 1998, 1999 ML Consulting and Computing Ltd.

All rights are reserved.

There is no post-paid reader's comment form at the end of this document. Please address your comments (with

the product version data included) directly to ML Ltd., H-1011 Budapest, Gyorskocsi u. 5-7; or send by e-mail

to mail@ml-cons.hu.

1

Contents

Overview ... 5

PART I .. 7

CS-Prolog Language ... 7

1. Syntax .. 9

1.1 Term syntax .. 9

1.1.1 Constant terms .. 9

1.1.2 Variables ... 11

1.1.3 Compound terms ... 11

1.1.4 Lists .. 11

1.1.5 Operators .. 12

1.1.6 The predefined operators .. 14

1.1.7 Brackets .. 14

1.1.8 Tokens .. 15

1.1.9 End token, end of file .. 15

1.1.10 Comments ... 15

1.1.11 Quoted strings ... 15

1.1.12 Double quoted lists .. 16

1.1.13 The CS-Prolog character set ... 16

1.1.14 Escape sequences .. 17

1.2 Program structure ... 18

1.2.1 Directives .. 18

1.2.2 User-defined predicates ... 21

1.2.3 Control constructs.. 23

2. Modules ... 26

2.1 Visibility rules .. 26

2.2 Exporting from a Module ... 26

2.3 Module prefix .. 27

2.4 Predicate import ... 27

2.5 Flexible predicates .. 27

2.6 Predicates with callable arguments ... 28

3. Input/Output System ... 29

3.1 Sources and sinks ... 29

3.2 I/O modes ... 29

3.3 Streams and aliases ... 29

3.4 Standard streams.. 29

3.5 Current streams .. 29

3.6 Memory streams ... 30

3.7 Stream positions ... 30

3.8 Options on stream creation ... 30

3.9 Stream properties ... 31

3.10 Read options... 32

3.11 Write options .. 32

Contents

2

3.12 Reaching end of stream .. 33

3.13 Text and binary streams ... 33

3.14 Character and term input .. 33

4. Exception handling ... 34

4.1 Format of error terms .. 34

4.2 Additional information term on exceptions .. 37

4.3 Error terms ... 37

4.3.1 Instantiation error .. 37

4.3.2 Type error ... 38

4.3.3 Domain error ... 38

4.3.4 Existence error .. 38

4.3.5 Permission error .. 38

4.3.6 Representation error .. 39

4.3.7 Evaluation error ... 39

4.3.8 Consistency error .. 39

4.3.9 Syntax error .. 39

4.3.10 Resource error .. 39

4.3.11 System error.. 39

4.3.12 Interrupt... 40

4.3.13 CLP System error .. 40

4.4 Error handling procedures ... 40

4.5 Error handling with catch/3 .. 40

4.6 Error handling with protected/3 ... 41

4.7 Signaling errors... 42

4.8 Error handling example ... 42

5. Preprocessor .. 44

5.1 Macros .. 44

5.2 Include files .. 44

5.3 Conditional compilation ... 45

5.4 Predefined macro symbols.. 46

5.5 Preprocessor command line options ... 47

PART II ... 49

Parallel programming & real-time features .. 49

6. Introduction .. 51

7. Basic notions .. 52

7.1 Processes ... 52

7.2 Phases in process creation ... 52

7.3 Processors .. 53

7.4 Termination of CS-Prolog programs .. 53

7.5 Channels and messages ... 54

7.6 Message passing .. 54

7.7 Events .. 54

8. The scheduling mechanism .. 56

8.1 The process distribution .. 56

8.2 The parallel execution ... 56

8.3 System-wide common names ... 57

Contents

3

8.4 Communication... 57

8.4.1 The channel handling .. 57

8.4.2 The message transfer .. 57

8.4.3 The event passing ... 57

8.5 The deadlock detection ... 58

8.6 Process deletion and program termination .. 58

9. Other real-time features ... 59

9.1 Time-outs ... 59

9.2 Direct interrupts .. 59

PART III .. 61

Built-in predicates .. 61

10. Introduction .. 63

11. Format of description.. 64

12. Term unification ... 65

13. Type testing.. 67

14. Term comparison ... 74

14.1 Term order .. 74

15. Term creation and decomposition ... 77

16. Arithmetic evaluation .. 81

16.1 Arithmetic expressions .. 81

17. Clause retrieval and information ... 88

18. Clause creation and destruction .. 93

19. Global value handling ..103

19.1 Clist values ..103

19.2 Overview of predicate use ...104

20. Binding flexible predicates ...113

21. File selection and control ...116

22. Operator and bracket handling ..145

23. Atom processing ..149

24. Date and Time...155

25. Prolog flags ...162

26. Control predicates ...165

27. Exception handling ..169

28. Solution collecting ...171

29. Parallel programming built-in predicates ..174

29.1 System-wide unique names ...174

29.2 Process goal ..175

29.3 Communication data ..175

29.4 Channel specifier ...175

29.5 The deadlock signal ...175

29.6 Error handling in real time processes ...175

30. Miscellaneous predicates...197

31. Predicates for the CLP extension ..201

PART IV ...207

CS-Prolog development system ...207

Contents

4

32. Files and directories ..209

33. Compiler ...210

34. Linker ..212

35. Runtime system ..213

36. Programming environment ..215

36.1 Environment commands ..215

37. Debugging ...218

38. The C interface..220

38.1 The prototype of the C function ..220

38.2 Basic C definitions ...221

38.3 The C interface function set ...221

38.3.1 Functions accessing Prolog terms ..221

38.3.2 Functions for creating Prolog terms ..223

38.3.3 Functions for unification ...223

38.3.4 Functions for non-deterministic predicates ..224

38.3.5 Functions for backtrackable predicates ...224

38.3.6 Memory handling ..225

38.3.7 Raising exceptions ...225

38.3.8 Generating events and interrupts ..227

38.3.9 Calling a Prolog predicate from C ...227

38.4 Foreign predicate example ..228

39. The Constraint Logic Programming (CLP) extension ...233

39.1 New term type: constrained variable ..234

39.2 Special behavior of constrained variables ..235

Appendix A - Error messages of the compiler ...237

Appendix B - Error messages of the linker ..240

Appendix C - Implementation of real-time processes ..241

Appendix D - Changes between versions..242

Appendix E - Known problems and errors ...244

Index of Built-in Predicates ...245

General Index...247

5

Overview

CS-Prolog II is a Prolog system developed in Hungary during years 1996-1999. The base for defining the

syntax and built-in predicates of CS-Prolog was the Prolog Standard (ISO/IEC 13211-1) which appeared in

1995. This base was extended with several features not included in the present standard — modularity, multi-

processing, real-time programming.

Beginning with version 2.0 a networking communication facility, an external data base access facility, and a

WWW interface had been added to the system. These extensions were funded by the EU in the framework of

the INCO-Copernicus project ExperNet: A Distributed Expert System for the Management of a National

Network, No 960114.

The most interesting property of CS-Prolog II is the possibility of creating processes that run in parallel. It

gives the opportunity of implementing parallel algorithms. CS-Prolog runs on different architectures having

either one or more processors. Processes created on the same processor are executed in quasi-parallel.

Processes can communicate with each other through channels. Real-time techniques are available as, e.g.,

creation of cyclic processes, alarm clock to set time-outs, etc. The networking communication is an inter-

application extension of the channel concept.

A sophisticated exception handling mechanism is implemented in CS-Prolog II that makes it possible to catch

an exceptional situation (an error or an interrupt) and handle it either on the place of the occurrence or on a

higher level, and to continue the execution afterwards.

The CS-Prolog II programming system consists of a compiler, a linker, a runtime system and an integrated

programming environment that combines the previous three components. In the environment, the user can

debug the program using an interactive trace. The compiler incorporates a preprocessor, which is very similar

to a standard C preprocessor. It helps to write more readable and portable programs.

This user manual describes the CS-Prolog II programming language and the programming system. This book

cannot serve as a primer to learn Prolog, it assumes that the reader is familiar with the Prolog language. The

name of the product will be abbreviated as CS-Prolog or CSP-II, but in this text these abbreviations will mean

always the CS-Prolog II system.

This volume is divided to four parts. These are:

I. CS-Prolog Language

II. Parallel and Real-Time Features

III. Built-in Predicates

IV. The Programming Environment

Part I describes the basic components of the language except the multitasking notions, which are collected in

part II. The third part contains the description of the built-in predicates, and the fourth one describes the usage

of the components of the programming system.

The networking features, the data base access, and the WWW interface, are described in separate supplements.

There used to be a second volume, now discontinued, for machine and operating system specific information.

The latest releases of CSP-II run only on unix platforms; the installation kit contains all the necessary

information.

Beginning with version 2.3 a Constraint Logical Programming (CLP) extension facility is included in the

system optionally. The runtime component can be shipped in two versions: with or without the CLP extension.

The version with CLP can have zero, one, or more (up to four) different CLP solvers installed. If no solver is

installed, or the user program does not activate any solver explicitly, then the extended system behaves as the

system without the extension (although the execution is somewhat slower).

An important characteristic of the CLP extension to be considered is that a new term type is introduced with it,

and this changes the meaning of several built in predicates relying on the closed set of types defined in the

Standard. Fortunately, this change has effect only when objects of this new type are actually present, i.e. when

the user program explicitly activates a solver.

The general description of the CLP extension is contained in two separate chapters of this manual; occasional

references are included in other parts, too. The description of particular solvers will be supplied as individual

supplements.

Overwiev

6

There is an experimental linear solver called the ‘ML solver’ included in the distribution kit, that can be

installed by the user. This solver is based on a linear programming algorithm; it handles linear inequalities and

equations over real numbers. It has some known bugs, and at present it can be run only by one of the

CS-Prolog processes at one time, so it is not recommended for use in production systems.

Note on version numbers: the major components of CS-Prolog II each have their own version number. The

most frequently changing component is the runtime program so the version number on the title page

corresponds to this number. Other components write out their own version number unless suppressed.

PART I

CS-Prolog Language

Chapter 1: Syntax

9

1. Syntax

CS-Prolog implements the standard Prolog syntax (it is close to the previous de facto standard Edinburgh

Prolog syntax).

A CS-Prolog program consists of one or more separately compiled modules.

The CS-Prolog system contains a preprocessor, described in chapter 5. The modules usually are scanned and

transformed by the preprocessor before the actual compilation. The following description deals with the syntax

of a CS-Prolog module after preprocessing, when all preprocessor commands and macros had already been

expanded.

1.1 Term syntax

A Prolog term is one of the following entities:

- constant term

- variable

- compound term

Constant terms are also called atomic terms.

1.1.1 Constant terms

A constant term can be:

- number

- atom

Numbers are unsigned integer or floating-point numbers. The prefix operator minus (-) with a numeric

constant as its operand denotes the corresponding negative number.

External representation of integer numbers:

- integer literal

- character code literal

- binary literal

- octal literal

- hexadecimal literal

An integer literal is an unsigned decimal integer.

A character code literal begins with 0’ prefix (zero character, quote character) and is followed by a single

quoted character (an item which can be part of a single quoted string, see section 1.1.11). It denotes the

numerical value of the character.

A binary literal begins with 0b prefix followed by one or more binary digits (0, 1). An octal literal begins with

0o prefix followed by one or more octal digits (0 through 7). A hexadecimal literal begins with 0x prefix

followed by one or more hexadecimal digits (0 through 9 and either uppercase or lowercase a through f).

The external representation of a floating-point number is the usual floating point literal in scientific notation,

the exponential part being optional (there must be a fractional part, however).

Examples:

1994

means the decimal number 1994 (integer literal)

0’a

means the decimal number 97 (character code literal)

0’\’

means the decimal number 39 (character code literal - meta escape sequence)

0’’’

also means the decimal number 39 (character code literal)

0b101

means the decimal number 5 (binary literal)

CS-Prolog Language

10

0’\101\

means the decimal number 65 (character code literal - octal escape sequence)

0o101

also means the decimal number 65 (octal literal)

0xFF

means the decimal number 255 (hexadecimal literal)

19.94

means the float number 19.94 (floating point literal)

1.994E1

also means the float number 19.94 (floating point literal)

An atom can be:

- identifier token

- graphic token

- quoted token

- the empty list ([])

- the empty curly brackets ({})

- semicolon token (;)

- cut token (!)

An identifier is an arbitrary sequence of alphanumeric characters and underscore (_) character, which begins

with a lowercase letter.

A graphic token is a character sequence composed from any of the following characters:

$ & * + - . / : < = > ? @ ^ ~ \

A graphic token cannot begin with the character sequence of the comment open (/*). A graphic token also

cannot be the single character ‘.’ (dot) when the dot is followed by whitespace or single line comment (it will

be parsed as an end-of-term token in this case).

If a graphic token is followed by a comment open character sequence, they must be separated by at least one

white-space character. E.g., the expression

@/* comment text */

is not treated by the compiler as a comment, because the character sequence @/* is a graphic token.

A quoted token is a character string constant, represented by a single quoted string, or a back quoted string, or

in certain cases by a double quoted string (see section 1.1.11), i.e., a character sequence enclosed in a matching

pair of single quote ('), double quote (“) or backquote (`) characters. A quoted token, which contains no

character, is the null atom. A quoted string can be spread over two or more lines by means of continuation

escape sequences. A continuation escape sequence is a backslash character (\) immediately followed by a

newline. A quoted string containing one or more continuation escape sequences denotes the same item as the

quoted string obtained by removing the continuation escape sequences from the original quoted string. If a

quoted string is to contain one or more instances of the delimiting quote character, they are to be either

doubled or escaped. In CSP-II, backquoted strings are treated like single quoted strings — they yield quoted

tokens. The interpretation of double quoted strings is under control of the settable prolog option flag

double_quotes (they can be interpreted as atoms, character lists, or character code lists).

Character code constants and quoted atoms may contain other escape sequences beside the continuation

sequence. These are described in section 1.1.14.

The special atom

[]

is used by convention to denote the empty list.

The maximum length for an atom in CS-Prolog is limited in 4095 characters.

Examples of atoms:

apple_pie

applePie

'Apple pie'

<=+=>

''

[]

Chapter 1: Syntax

11

1.1.2 Variables

A variable is an arbitrary sequence of alphanumeric characters and the underscore character beginning with

either an uppercase letter or the underscore character. A variable consisting of a single underscore character is

called an anonymous variable. Each occurrence of the anonymous variable is different from any other

occurrence of a non-anonymous or the anonymous variable.

Note: If a variable is only referred to once in a clause, it does not need to be named and may be written as an

anonymous variable. Otherwise the presence of such singleton variables often indicates a misspelled variable

name, and the compiler can give optional warning for them. The warning is suppressed for singleton variables

the name of which begins with underscore (they can be used to improve readability of the source text).

Examples of variables:

X

X1

_13

VAR

_

What_is_this

1.1.3 Compound terms

A compound term is of the form

term_name(arg1,arg2, ...,argN)

where term_name is an atom, and arg1, arg2, ... argN are arbitrary Prolog terms. term_name is called

the name of the term, N is its arity. The term_name/N expression is called the functor of the compound

term. N has to be not higher than 255.

This notation of a compound term is called functional notation. Every compound term has functional notation.

When its principal functor is an operator, a compound term has also another notation, the operator notation.

This notation is used when reading and writing compound terms whose functor name is an operator. The

notion of operators is described in section 1.1.5.

When the principal functor is ’.’/2 (the name of the functor is the atom containing one dot character, and

the arity is two), then the compound term is called a list. Lists can be written in a third notation, called list

notation (see the next section).

A term that does not contain any unbound variables is called ground terms.

Examples of compound terms:

foo(1,2)

bar(foo(apple),apple(foo))

.(1,[])

1.1.4 Lists

There is a special class of compound terms, whose functor is ’.’/2. These terms are called lists and they can

be written in a different, more readable format. The term

.(Head, Tail)

can be written as

[Head | Tail]

Head is called the head of the list and Tail is called the tail of the list. Head is the first element of the list.

If the tail itself is a list too, then the list

[H1 | [H2 | T]]

can be written as

[H1, H2 | T]

H2 is the second element of the list.

CS-Prolog Language

12

There is a special atom [] called the nil atom, which by convention indicates the empty list, the list without

elements. If the tail of a list is the empty list, the vertical bar and the empty list can be omitted. So the

following three expressions denote the same lists:

[a | [b | []]]

[a, b | []]

[a, b]

If the tail of a list is a variable, the list is called partial list, if the tail of a list is not a list, it is called not

proper list.

1.1.5 Operators

If a unary or binary functor (a functor with arity 1 or 2) is declared as an operator, then terms created using

this functor can be written in a different format, in so called operator notation.

There are some predefined operators and the user can define others (see the built-in predicate op/3 and

directive op). An operator is defined by its name, specifier and priority. Any atom can be the name of an

operator.

There are three classes of operators:

- prefix

- infix

- postfix

A unary functor can be declared as a prefix operator or a postfix operator. If foo/1 is such a functor then the

term

foo(ARG)

can be written as

foo ARG

or

ARG foo

depending on whether foo is a prefix or a postfix operator.

If foo/2 is a binary functor which is declared an infix operator, the term

foo(ARG1, ARG2)

can be written in the form

ARG1 foo ARG2

The priority of an operator is an integer, in the range 1-1200. The lower is the priority the stronger binds the

operator. The priority resolves the ambiguities arising if an expression contains more then one operator. E.g.

the expression

ARG1 op1 ARG2 op2 ARG3

is parsed as

ARG1 op1 (ARG2 op2 ARG3)

that is equivalent with

op1(ARG1, op2(ARG2, ARG3))

if the priority of op1 is greater than the priority of op2. But if the priority of op1 is less than the priority of

op2, then the same expression is parsed as

(ARG1 op1 ARG2) op2 ARG3

that is equivalent with

op2(op1(ARG1, ARG2), ARG3)

The specifier of an operator is a mnemonic that defines the class (prefix, infix or postfix) and the (right-

associative, left-associative or nonassociative) of the operator. The associativity resolves the ambiguities

arising if an expression contains more than one operator with the same priority. E.g., the term

ARG1 op ARG2 op ARG3

is parsed as

Chapter 1: Syntax

13

ARG1 op (ARG2 op ARG3)

when op is a right associative infix operator, and it is parsed as

(ARG1 op ARG2) op ARG3

when op is a left associative infix operator. If op is nonassociative operator, the expression above without

parentheses is not a legal term; trying to read it in causes a syntax error exception.

The specifier names are:

 Specifier Class Associativity

 fx prefix non-associative

 fy prefix right-associative

 xfx infix non-associative

 xfy infix right-associative

 yfx infix left-associative

 xf postfix non-associative

 yf postfix left-associative

An argument with the same priority as a non-associative operator must be enclosed in parentheses. For

example

fx fx Arg

expression (here fx is an operator with specifier fx) causes syntax error, it must be written as

fx (fx Arg)

There cannot be two operators with the same class and name, or an infix and postfix operator with the same

name.

There cannot be a left bracket (see section 1.1.7 below) and a prefix operator with the same name. There also

cannot be a right bracket and an infix or postfix operator with the same name.

The priority of the comma predefined operator cannot be changed. (Note that the comma token itself is not an

atom, but it is treated as synonymous with the ’,’ operator in appropriate context.)

If the priority of an operator is not less then the priority of the comma predefined operator (1000), then an

expression in operator notation with such an operator for its main functor appearing an argument (of another

term written in functional notation, or in list notation) must be enclosed in parentheses. So the expression

assertz(head:-body)

causes a syntax error, because the priority of the :- infix operator is not higher (1200, numerically not less)

than the priority of comma. The valid expression is:

assertz((head:-body))

An atom, which is currently defined as an operator name or bracket name, cannot be the immediate operand of

an operator in a term written in operator notation (i.e., when it occurs just as an atom, not as operator). In such

context the atom must be parenthesized. For example

Rel == ’@<=’

is invalid; the valid expression is:

Rel == (’@<=’)

This restriction may cause some confusion, especially with alphanumeric tokens used as operator names (like

‘is’).

CS-Prolog Language

14

1.1.6 The predefined operators

Priority Specifier Operators

1200 xfx :-

1200 fx :- ?-

1150 fx dynamic

1100 xfy ;

1050 xfy ->

1000 xfy ’,’

900 xfx as

900 fy \+

700 xfx = \= == \==

700 xfx @< @=< @> @>=

700 xfx =..

700 xfx =:= =\= < =< > >=

700 xfx is

600 xfx : $:

500 yfx + - \/ /\

400 yfx * / mod // rem

400 yfx << >>

200 xfx **

200 xfy ^

200 fy - \

1.1.7 Brackets

CS-Prolog II introduces the notion of user brackets. A bracket is defined by two atoms — bracket open and

bracket close — and a priority. The atom formed by concatenation of bracket open and bracket close is the

name of the bracket. An expression

br_open arg1, arg2, ...argN br_close

is equivalent with the following term

br_name((arg1, arg2, ... , argN))

(provided that br_open, br_close, and br_name are the respective atoms for a bracket). E.g., if <: and

:> are declared as open and close atoms of a bracket then the expression

<: 1, 2, 3 :>

is equivalent with the term

<::>((1,2,3))

The priority of a bracket is an integer, in the range of 1-1200. The special priority value 1202 can be used too,

with a special meaning. If a bracket is declared with priority 1202 then the bracket components function

simply as a new set of parentheses. The other priority values are all equivalent. (Priority value 0 is used for

removing a bracket declaration.)

There is one predefined user bracket declared in CS-Prolog:

Priority Open Close

 1200 ’{’ ’}’

The priority of the predefined curly brackets cannot be changed.

In normal practice, however, the unquoted open-curly and close-curly tokens are used instead of the quoted

atoms indicated above. The unquoted variant is defined by the Prolog Standard; the user brackets facility is a

CSP-II extension. The unquoted and quoted variants yield the same result (the structure name in both cases is

the special unquoted atom {}), but only matching pairs are accepted.

The components of a bracket definition (br_open, br_close, and br_name) must be distinct atoms,

different from the empty string. No component can be involved in any other bracket definition.

There cannot be a left bracket (see section 1.1.5 above) and a prefix operator with the same name. There also

cannot be a right bracket and an infix or postfix operator with the same name.

Chapter 1: Syntax

15

1.1.8 Tokens

The basic element in the Prolog source text, recognized by the compiler and by the term-input built-in

predicates, is the character sequence known as a token. The variables, atoms, numbers are tokens. Some single

characters such as open paren ((), close paren ()), open list ([), close list (]), open curly ({), close curly (}),

head tail separator (vertical bar, |), comma (,) are also tokens in themselves.

Tokens are delimited by any character that cannot be absorbed into them (as white-space characters in most

cases).

1.1.9 End token, end of file

The end token consists of the period character (.) followed by white space character or end of file character.

The end token has a special meaning. Each term shall be terminated by it. The end token cannot be part of any

term. The character representation of it in a source or data file is a period, but the input predicate

read_token/[1,2] returns it as a special atom end_of_term.

There is another special atom end_of_file, which is returned by character or term reading input predicates if

the file end is reached.

The atom consisting of a single dot character ('.') must not be followed by white space text, since that

denotes an end token.

1.1.10 Comments

A comment is a sequence of characters that is treated as a single white-space character by the compiler and it

is otherwise ignored.

There are two kinds of comments: single line comments and bracketed comments.

A comment can contain any combination of characters from the character set except as noted below.

Single line comments start with the percent sign character (%) and finish with newline character; they cannot

contain newline character inside.

Bracketed comments begin with a slash star character sequence (/*) and finish with the star slash character

sequence (*/), they cannot contain this comment closing sequence. A bracketed comment can occupy more

that one line.

1.1.11 Quoted strings

A sequence of items called quoted characters enclosed in a pair of matching quote characters constitutes a

quoted string. There are three kinds of quoted strings, according to the three different quote characters

available (single, double, and back quote character, see section 1.1.13). Single quoted strings constitute (single)

quoted tokens that are atoms (as term). Back quoted strings in CSP-II are treated as single quoted strings (an

extension allowed by the Standard). The handling of double quoted strings depends on the value of the Prolog

flag double_quotes (see the next section and 1.2.1) at the time when the read-term or Prolog text is input.

The common properties of quoted strings are described in this section.

A quoted string token can be spread over two or more lines by means of continuation escape sequences. A

quoted string containing one or more continuation escape sequences denotes the same token as the one

obtained by removing the continuation escape sequences from the original quoted string.

CS-Prolog Language

16

The content of a quoted string is a sequence of so called quoted characters, which may be:

ordinary character (alphanumeric, graphic, solo, or non-alpha extended);

space character;

the quote character framing the quoted string, doubled (representing one such quote);

a non-doubled quote character, different from the quote framing the quoted string;

meta escape sequence;

control escape sequence;

octal escape sequence;

hexadecimal escape sequence.

The escape sequences mentioned above are described in section 1.1.14.

1.1.12 Double quoted lists

A quoted string framed by a pair of double quote characters (") is a double quoted list token. It denotes a term

which depends on the value of the Prolog flag double_quotes (see section 1.2.1) at the time when the

read-term or Prolog text is input. Normally (by default) it is treated by the system as a character code list, i.e., a

list which has the same number of elements as there are quoted characters in the back quoted string. The

elements of this list are integers corresponding to the ASCII codes of the characters in the string. For example,

the following two terms are equivalent:

"abcd efgh"

[97, 98, 99, 100, 32, 101, 102, 103, 104]

The handling of double quoted tokens can be modified by setting the double_quotes flag. Depending on

the current value of this flag, a double quoted token is read as a list of characters or simply as an atom (single

quoted token) instead of the default handling described above.

1.1.13 The CS-Prolog character set

The alphanumeric characters include the uppercase and lowercase letters of the English alphabet, the 10

decimal digits and the underscore (_) character. The alphanumeric characters are used to form atoms and

variables. The set of alpha characters might be extended to include national letters, depending on the features

and current settings of the operating system.

The white space characters are the space, tab, carriage return and newline characters. The space character

denotes itself when quoted. An unquoted white space character is sometimes necessary to separate tokens, but

is not itself a token or part of a token. Comments are treated as a single white space character; i.e., they are

ignored except for the token-separation effect.

The graphic character set consists of the following characters:

Hash mark (number sign)

$ Dollar

& Ampersand

* Asterisk

+ Plus sign

- Minus sign

. Period

/ Forward slash

: Colon

< Left angle bracket

= Equal sign

> Right angle bracket

? Question mark

@ At sign (unit price)

~ Tilde

^ Caret

The graphic characters can be concatenated to form atoms. Two adjacent atoms must be separated by at least

one white-space character when the last character of the first atom and the first character of the second atom

Chapter 1: Syntax

17

are graphic characters. The backslash (\) character, categorized as meta character, in graphic tokens also

behaves like a graphic character.

The solo characters are the following:

(Left parenthesis

) Right parenthesis

[Left bracket

] Right bracket

{ Left brace

} Right brace

| Vertical bar (head tail separator character)

, Comma

! Exclamation mark or cut

; Semicolon

% Percent sign (end line comment character)

A solo character denotes itself when quoted. An unquoted solo character is a token in itself except that % and

the remaining characters on the line are a comment. A solo character token need not be separated by white

space from an adjacent token.

The meta characters are the following:

\ Backslash

’ Single quote

” Double quote

` Back quote

A meta character modifies the meaning of the character or characters following it. A backslash character starts

an escape sequence in a quoted string and in a character code constant, but in a graphic token it behaves like a

graphic character. The quote characters are used to indicate the start and the end of a quoted string of the

corresponding kind.

In CSP-II other characters, known as non-alpha extended characters, also can appear as quoted characters and

in comments. Any character supported by the platform and not included in one of the categories listed above is

treated as non-alpha extended character if its code value is between 1 and 254. (Note that this is different from

the Standard where each extended character must be assigned to one of the five categories above.)

1.1.14 Escape sequences

Quoted tokens, character code list tokens and character code constants can contain escape sequences. An

escape sequence denotes a single character and always begins with a backslash (\).

Escape sequences are used to specify characters such as carriage return and tab movement, and to provide

literal representations of nonprinting characters and characters having normally special meanings such as

single quotation mark ('), double quotation mark ("), back quotation mark (`), and the backslash itself. (Note

that the delimiting quotation mark character can be represented inside the quoted string also by doubling the

character.)

CS-Prolog Language

18

The following escape sequences are valid in CS-Prolog:

Category Escape sequence Remark

control escape sequences:

\a Alert (bell)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

meta escape sequences:

\\ Backslash

\' Single quotation mark

\" Double quotation mark

\` Back quotation mark

octal escape sequence:

\O..O\ an ASCII character with the code in octal form

hexadecimal escape sequence:

\xH..H\ an ASCII character with the code in hexadecimal form

In the last two lines O..O indicates octal digit sequence, H..H indicates hexadecimal digit sequence. Note

that these two escape sequences are finished by a backslash.

It is an error if a backslash appears within a quoted string in a combination other then one of the cases above

or in a continuation escape sequence (immediately preceding a newline character).

Using the octal or hexadecimal escape sequences any character from the ASCII character set can be specified.

For example, the ASCII backspace character can be given by the normal \b escape sequence, or by \10\

(octal) or by \x8\ (hexadecimal) sequence.

As it was explained earlier, the backslash — newline character combination can be used as continuation escape

sequence. When a newline character immediately follows the backslash, the backslash and newline will be

ignored and the next line will be treated as part of the previous one.

1.2 Program structure

A CS-Prolog application program is composed of one or more modules. Each module has a name, and is

compiled as one unit (i.e., parts of one module cannot be compiled separately and one compilation unit may

not consist of more than one module). The final application program is constructed by the linker from

individually compiled modules. There cannot be two modules with the same name in an application program.

One (and only one) of the constituent modules shall contain the goal of the program — an exported

user-defined predicate that will be called by the runtime system. This goal has a fixed name main_goal.

Running the application amounts to evaluating the main goal.

The functor of the main goal can be either main_goal/0 or main_goal/1. If the predicate of arity 1 is defined, it

will be invoked with a list argument composed by the runtime system from the command line argument words

supplied by the user at invocation (see chapter 35). The predicate has to be made public (exported).

A module consists of a sequence of directives and predicate clauses (Prolog text). Syntactically both directives

and clauses are read-terms, i.e., well formed terms followed by an end-of-term token. A module must begin

with the module head directive, and may end with the optional module end directive or at the end of the input.

1.2.1 Directives

Directives provide declarative information to the compiler; they are not executable entities even if the syntax

suggests so. They specify properties of the procedures defined or referenced in the Prolog text, or the format

and syntax of read-terms in the Prolog text.

Chapter 1: Syntax

19

Directives (except the module head directive) may appear anywhere in the module. The scope of a directive

begins at the directive itself and lasts to the end of the module, or, in some cases, to the nearest related

occurrence of the same directive.

The functor of all directives is :-/1. The argument of the

:-

operator is a compound term. The arity of this compound term is usually 1; but there are some directives that

take more arguments.

Several directives have the following generic syntax:

:-directive_name(PredicateIndicators).

A predicate indicator (often mentioned simply, but not quite precisely, as functor) is a compound term

’/’(A,N) where A is an atom or a parenthesized atom, and N is an integer. It is usually written in operator

notation as A/N, and indicates the procedure whose identifier is A and whose arity is N.

The PredicateIndicators argument can be a single predicate indicator, a non-empty list of predicate

indicators, or a sequence of predicate indicators connected by the ’,’/2 operator (i.e., a comma-separated

sequence enclosed in parentheses).

Here follows the complete list of directives of CS-Prolog. Some of them, related to modularity, are explained in

more detail in chapter 1.2.3.

Module head directive

The module head directive must precede any other directive and clause in the source text.

:-module(Module_name, PredicateIndicators).

Module_name is an atom, different from nil. PredicateIndicators specify the exported predicates. An

empty list also can be given but the compiler issues a warning in this case (There is no normal use for a

module without exported procedures).

Module end directive

The module end directive is optional in CSP-II; it can be used to indicate the end of the source text for a

module.

:-endmod.

If this predicate is not present then the module ends at the end of the input stream for the compilation. If

present, it must not be followed by any directive or predicate clause.

Import directive

The import directive serves for declaring predicates to be imported. The primary function of the import

directive is to determine the source module and the name and arity of the predicate to be imported. Its

secondary function is to determine the local name under which the imported predicate is intended to be used.

:-import(Import_functor_desc_list).

Import_functor_desc_list is a single Import_functor_desc, a non-empty list, or a sequence of

Import_functor_desc-s of the imported predicates.

The Import_functor_desc can have the following most general form:

[Mod_name:]ImportedPredicate [as Alias_predicate]

where Mod_name is either an atom or a variable, the ImportedPredicate is either a predicate indicator

or a variable, and the Alias_predicate is either a predicate indicator or an atom. The brackets here mean

that something is optional, that is, the module name part or the alias part or both of them can be omitted.

CS-Prolog Language

20

Dynamic directive

The dynamic directive serves for declaring predicates to be dynamic, so that the program can manipulate them

(add, delete clauses) during runtime.

:-dynamic(PredicateIndicators).

The compiler assumes that functors of calls that do not match any definition in the module (a predicate

definition or an import, foreign, or dynamic declaration) are functors of dynamic predicates. A warning,

however, is issued by the compiler for these — unknown — calls, because in many cases unknown calls are

result of clerical errors.

Operator directive

The operator directive declares the properties of the user-defined operators for the compiler (see section 1.1.5).

These declarations have no effect during runtime.

:-op(Priority,Associativity,Operator_name_list)

About the meaning of the arguments, see the description of the op/3 built-in predicate in part III.

Bracket directive

The bracket directive declares the properties of the user-defined brackets for the compiler (see section 1.1.7).

These declarations have no effect during runtime.

:-bracket(Priority,Open_atom,Close_atom)

About the meaning of the arguments, see the description of the bracket/3 built-in predicate in Part III.

Foreign directive

The foreign directive declares that the indicated predicates are written in a language other than Prolog.

:-foreign(PredicateIndicators).

The description of how to use the foreign language interface is described in chapter 37.

Meta predicate directive

The meta predicate directive gives the compiler information about the arguments used in the calls of a

predicate (at the moment when the call is actually performed).

The form of the meta predicate directive is:

:-meta_predicate(name(M1,M2,...,Mn)).

where M1, M2,..., Mn are mode-specifiers for the respective argument of the procedure. The value of a

mode-specifier is one of the atoms: +, -, ?, :.

The mode of an argument can be

+

input — the argument should be instantiated (at least partially)

-

output — the argument should be an uninstantiated variable

?

unknown — the argument can be any term (either input or output)

:

procedure — the argument is a callable term that may be called later (by a metacall) or some

other object that needs module name expansion

The use of the meta predicate directive is not essential except when a predicate passed as an argument will be

called in a meta call from another module, see section 2.6. However, it may improve the efficiency of the

program (both in size and execution speed); and provides means for expressing and checking (now at runtime

only) the intended usage of a procedure.

Chapter 1: Syntax

21

Note that importing a predicate does not mean importing its meta predicate declaration. The directive has to be

repeated in the module where the predicate is imported. (Header include files can help in having the

declarations in one place.)

Discontiguous directive

The clauses of a user-defined procedure should normally form a contiguous group in the Prolog text, i.e.,

clauses for different procedures should not be interspersed and directives should not appear inside the group.

The enforcing of this rule helps the compiler detect some frequent errors, e.g., due to misspelling or omitted

arguments. If, however, it is desirable for any reason to write a procedure in several non-contiguous parts, the

discontiguous directive can be used to suppress this checking:

:-discontiguous(PredicateIndicators).

The directive specifies that each of the indicated predicates may be defined by clauses which are not

consecutive read-terms of the Prolog text.

If Prolog text contains a discontiguous directive related to a predicate PI, then PI can be indicated in any

number of other discontiguous directives in the Prolog text. The first such directive, however, shall precede all

clauses for the procedure PI.

set_prolog_flag directive

The set_prolog_flag directive changes some options that influence the parsing of the source text during

compilation. It implements a subset of the set_prolog_flag/2 built-in predicate.

:-set_prolog_flag(Flag, Value).

Two flags can be changed for the compilation: double_quotes and

float_range_checking_function (see chapters 16 and 25). The default setting of

float_range_checking_function is underflow_exception_after_rounding for

compilation, while for the runtime system it is denormalize.

1.2.2 User-defined predicates

User-defined predicates (procedures) consist of a sequence of clauses that have the same principal functor. For

a call, which has this functor, the first clause is tried, and on backtracking the others are retried. The order of

clauses is defined by the order in which the clauses appear in the Prolog text. (This is true also for the statically

compiled portion of dynamic predicates.)

All the clauses for a user-defined procedure shall be consecutive read-terms in the Prolog text (not interspersed

with directives or clauses for other procedures) unless there is a discontiguous directive for the procedure in the

Prolog text.

If no clauses are defined for a predicate indicated by a dynamic directive or a discontiguous directive, then the

procedure is regarded as existing (dynamic), but has no clauses initially. The compiler issues a warning if the

predicate is indicated only in a discontiguous directive.

If there are calls for a user-defined procedure in the text, but the procedure has no definition whatever, then the

compiler issues a warning and the procedure is regarded as dynamic, but non-existing.

The difference between an existing dynamic procedure with no clauses and a non-existing one is that in the

first case a call to the procedure simply fails, while the call to a non-existing procedure is under control of the

unknown Prolog flag.

A clause is a non unit clause (rule) or a unit clause (fact). Every clause in a module has to be terminated by a

period (end token).

A unit clause is a callable term (an atom or a compound term which is not a list). It defines a fact in Prolog

parlance. A unit clause

Fact.

expresses that Fact is true (holds). The principal functor of a fact is its functor itself.

Non unit clauses are of the form

Head :- Body.

CS-Prolog Language

22

where Head is a callable term and Body is a call sequence. Such a clause is customarily referred to as a rule.

The informal meaning of this rule is: Head is true if Body is true. The principal functor of a rule is the

principal functor of its head.

A call sequence is a call or a sequence of calls separated by commas. A call sequence is true if each call in it is

true (see also conjunction in the next section).

A call can be:

— a call sequence (containing multiple calls)

— a group of alternatives (or simply group)

— an if-then control construct

— an if-then-else control construct

— one of the atomic control constructs !/0 (cut), true/0, fail/0

— a control construct call/1

— a prefixed call

— a callable term

— a variable (metacall)

A group is a sequence of alternatives separated by semicolons, or a single sequence. A group is true if one of its

alternatives is true. (In Prolog execution the alternatives are tried one by one during subsequent backtracks.)

Each alternative is a call sequence except that an if-then construct can appear only as the last alternative. This

is because (;)/2 (semicolon) serves two distinct functions depending on whether or not the first argument is a

compound term with functor (->)/2. When it is, then we have an if-then-else construct instead of group. (See

also disjunction in the next section.)

A prefixed call is a compound term with functor (:)/2, usually written in operator notation as

ModName:Inner, where ModName should be a valid module name by the time of the activation, and Inner is

a call. The prefixed call construct instructs the system to take the definition of Inner from module ModName

(see also chapter 2).

A callable term is an atom or a compound term which is not a list. Let Func denote the functor of the callable

term. If there exists a unit clause in the program with functor Func that is unifiable with the call, then the call

is true (succeeds). If there exists a rule (non unit clause) in the program with functor Func and the head of the

rule is unifiable with the call, and the body is true then the call is true (the call succeeds). The built-in

predicates are conceptually present in any module; they succeed or fail depending on their arguments and the

actual program state.

The variable constituting a metacall has to be instantiated by the moment of the invocation. Its value can be

any valid call except a variable. The effect of a metacall is the same as calling the call/1 control construct with

that variable as the argument.

The control constructs are described in the next section.

Note that if a call in a call sequence is itself a (multi-member) call sequence (enclosed in parentheses in

operator notation) then the effect is the same as for the flattened structure obtained by removing these

parentheses.

Example:

:- module(relatives,[main_goal/0]).

mother(kate, mary). /* fact */

father(kate, joe). /* fact */

mother(christine, mary). /* fact */

father(christine, joe). /* fact */

father(sylvester, emeric). /* fact */

mother(sylvester, elizabeth). /* fact */

parent(Child,Parent):- /* rule (head)*/

 mother(Child, Parent); /* alternative */

 father(Child, Parent). /* call */

sibling(X,Y):- /* head */

 parent(X,PARENT), parent(Y,PARENT). /* call sequence */

main_goal:- /* rule (head) */

 sibling(kate, christine). /* call */

This small program will successfully terminate. If the main goal is changed to

Chapter 1: Syntax

23

main_goal:-

 sibling(kate, sylvester).

then the program will terminate with failure. With the main goal changed to

main_goal:-

 sibling(kate, WHO), write(WHO).

the program will produce the output christine.

If the module head is changed to

:- module(relatives,[main_goal/1]).

and the main_goal/0 clause is replaced by

main_goal([WHO]):-

 sibling(kate, WHO).

then the program expects exactly one command line argument, and succeeds or fails depending on whether or

not the argument supplied is the name of a sibling of kate.

1.2.3 Control constructs

Note in advance that (;)/2 serves two distinct functions depending on whether or not the first argument is a

compound term with functor (->)/2 (disjunction or if-then-else).

See also Control predicates, chapter 26.

call/1

call(Goal)

is true if and only if Goal is instantiated to a valid call other than a variable by the time of the invocation, and

Goal is true.

When Goal contains ! (cut) as subgoal, the effect of ! does not extend outside Goal (i.e., call/1 is

non-transparent to cut).

!/0 — cut

Cut is used to control backtracking. The call

!

always succeeds (is true). On backtracking into it, this call modifies the execution so that no choices are

permitted between the call and its parent. Parent of the cut is usually the invocation of the procedure

containing the cut as call, but some control constructs are non-transparent to cut, or have non-transparent parts

(see if-then, if-then-else, and call/1). Meta calls, being equivalent with call/1, are also non-transparent to cut.

In such cases the parent is the nearest non-transparent call (call sequence).

(‘,’)/2 — conjunction

’,’(First, Second)

or written in operator notation as

First ’,’ Second

is true if and only if First is true and Second is true.

Note that in most cases the unquoted variant of the comma infix operator also can be used.

Call sequences mentioned in the previous section are constructed using conjunction.

CS-Prolog Language

24

(;)/2 — disjunction

;(Either, Or)

or written in operator notation as

Either ; Or

is true if and only if Either is true or Or is true.

Note that in a disjunction Either cannot be a compound term with (->)/2 as principal functor. Such a

complex construct is interpreted rather as if-then-else (see below). An if-then construct can be used in Either

position only indirectly, embedded in a call/1 construct, or transformed to an equivalent but syntactically

different call sequence. For example

a -> b ; c

is an if-then-else construct. A disjunction in which the Either part is equivalent with (a -> b) can be written

as

(a -> b), true ; c

The difference between the two is that in the first case if a succeeds, then c is not tried on backtracking, while

in the second case c will be tried. In both cases a can succeed at most once.

Groups of alternatives mentioned in the previous section are constructed using disjunction.

(->)/2 — if-then

An if-then construct is of the form:

If_part -> Then_part

(operator notation). Here If_part and Then_part both are call sequences. The meaning of this construct is

the following. The construct is true if If_part is true and then Then_part is true for the first solution of

If_part. On backtrack the eventual alternatives (choice points) in If_part are ignored.

If_part is non-transparent to cut, i.e., a cut appearing in it cuts only choice points opened during the

evaluation of If_part itself, as if If_part were executed separately in a call/1 construct.

(;)/2 — if-then-else

An if-then-else construct is of the form:

;(->(If_part, Then_part), Else_part)

or written in operator notation:

If_part -> Then_part ; Else_part

The main functor of the construct is (;)/2 and the main functor of the first argument is (->)/2 (c.f. disjunction

above). Here If_part, Then_part, and Else_part all are call sequences. The meaning of this construct

is the following. The construct is true if either If_part is true and then Then_part is true for the first

solution of If_part, or If_part is false and Else_part is true. On backtrack the eventual alternatives

(choice points) in If_part are ignored.

If-then-else constructs are often used in a chain, and can be regarded informally as a committed choice in the

sense that the first If_part that succeeds in such a chain reduces the continuation to the associated

Then_part.

If_part is non-transparent to cut, i.e., a cut appearing in it cuts only choice points opened during the

evaluation of the If_part itself, as if If_part were executed separately in a call/1 construct.

Note that (;)/2 and (->)/2 are predefined operators so that

 (If -> Then ; Else)

is parsed as

;(->(If,Then),Else)

Chapter 1: Syntax

25

true/0

fail/0

true/0 always succeeds; fail/0 always fails. In trace mode, however, they behave as equivalent built-in

predicates (i.e., they appear in the trace output).

CS-Prolog Language

26

2. Modules

Modules are individually compiled parts of a CS-Prolog program. The main purpose of using modules is to

divide large programs into units of manageable size, with clearly defined interfaces. The module concept also

facilitates information hiding (encapsulation) and reusability.

In a module there can be calls invoking predicates defined in that module, built-in predicates, and predicates

imported from other modules. A predicate is defined in a module if there is a static definition, or a dynamic

declaration, or foreign declaration for it. A predicate can be imported only if it is specified as public in the

supplier module. Non-exported static predicates are hidden inside the module, so identically named local

procedures in different modules do not interfere with each other.

2.1 Visibility rules

The data names (atoms) are global for the entire program; there are no local atoms in a module or in a process.

A source/sink stream (see chapter 3) is global in the sense that if a stream is opened then any process in any

module can read from / write to it using its identifier or alias.

Value names (see set_value/2 built-in predicate in chapter 19) are also global for modules, but not for

processes. That means that a value name is associated with the same value if it is used in different modules by

the same process. On the other hand, different processes can and will have different values associated to the

same value name, or not have a defined value for the name at all.

The operator and bracket declarations are local for a module in compile time. It is important to know that any

operator or bracket declaration given statically in a module in form of op/3 or bracket/3 directive, has effect

only during the compilation of that module. The runtime system is initiated only with the built-in operators

and brackets. So if you want an operator or bracket to be declared during the execution, it has to be added by

the op/3 or bracket/3 built-in predicate at the beginning of the program execution. The operator and bracket

definitions are global data in the system.

The dynamic database of a module is visible for any other module via the clause retrieval and modification

built-in predicates, prefixing the predicate name with the supplier module name in the client module (see

module prefixing in section 2.3). Similarly, asserting to, and deleting from, an other module's dynamic

database is also possible. However, a module has to import the dynamic predicates if they are directly called,

like in the case of static predicates.

There are some predefined standard modules in the system that define some of the built-in predicates.

2.2 Exporting from a Module

Exporting procedures (predicates) from a module means that any other module will be able to use them via

explicit or qualified import. The exported predicates are listed in the module head directive.

The module head directive specifies the name of the module and the public predicates that are exported from it.

Its format:

:- module(ModName,PredicateIndicators).

ModName must be an atom (the name of the module) different from nil. PredicateIndicators is a list or

sequence of predicate indicators being exported. The predicates represented in this list must be known within

the module at compile time, i.e., they must be either defined statically, or declared as dynamic or foreign

predicates. Imported predicates also can be re-exported. The exported predicates are called public. E.g.:

:- module(list_handling,[member/2,append/3]).

When a single predicate is exported, the second argument can be given as a single predicate index. The

argument also can be given an empty list, which causes a warning message only.

Chapter 2: Modules

27

2.3 Module prefix

If a predicate is referenced in a module and the definition of the predicate is in another module then the

referenced predicate name must be prefixed by a module prefix. The module prefix supplies the name of the

module which defines or re-exports the predicate. Prefixing is usually written in operator notation; the colon

built-in infix operator (:)/2 serves for this purpose:

Mod_name : Term

This module prefix is used for instance if a dynamic clause is accessed, that is defined in another module:

assertz(mod1 : fact)

abolish(mod1 : fact/0)

Another example of using module prefixes is the qualified import that is described in the next sections.

2.4 Predicate import

In order to make it possible to call a predicate from another module, the predicate has to be imported. The

functors of the imported predicates are normally enumerated in import directive(s). An import directive has the

form:

:-import([Modname:PI, ...]).

The exact syntax of import directive is described in section 1.2.1. Modname is the name of a module where the

procedure characterized by predicate indicator PI is defined. This predicate has to be declared public in

module Modname (by placing its indicator into the export list).

The module prefix (the module name and the colon operator) can be omitted, or Modname can be specified as

a (placeholder) variable, to indicate non-restricted import. In this case the system will search all modules for

the predicate during link editing or binding. The linker issues a warning if a matching predicate is exported

from more than one module, and resolves the reference to the first matching predicate encountered.

To avoid name clashes or to be able to assign alias name to an imported predicate there is the possibility of

giving a local name to an imported functor. The

:-import([ModName:AlienName/Arity as LocalName...]).

directive allows us to use LocalName inside the module instead of the original AlienName in calls of the

AlienName/Arity predicate. Usually AlienName/Arity is a normal predicate indicator. The next

section describes the case when AlienName and/or ModName are variables.

 LocalName can be a predicate index or an atom. If it is an atom, then it is conceptually augmented with

Arity to form the local predicate index LocalName/Arity. Otherwise, the arities must be the same.

A module prefixed call

Mod : Call

can be invoked even if there is no import directive for the functor of Call. It behaves as if an import directive

were declared for the functor of the call while compiling this call, but the import declaration does not remain

permanent; other occurrences of calls with the same functor have to be module prefixed again. Note also, that,

unlike the import directive, a prefixed call will not conflict with existent local definitions of the predicate

indicator. In other words, prefixed calls make it possible to call a predicate from another module directly even

if the same predicate indicator has a local definition, too.

2.5 Flexible predicates

It is possible to import an unspecified predicate and refer to it in the module by a local name (late binding).

The form of such an import is

:-import([X as LocalPred]).

or

:-import([ModName:X as LocalPred]).

X is a variable (an identifier beginning with an upper case letter or underscore). This variable is not a real

Prolog variable, it will never have any value; it is rather only a placeholder to show that the imported predicate

functor is not fixed at compile time.

CS-Prolog Language

28

LocalPred is the (full) predicate indicator used locally to call the imported predicate. It defines a so-called

flexible predicate, which can be used in clauses, but the program must provide an actual predicate functor for it

before the first call is executed. This can be done by bind/2 built-in predicate. If ModName is given as a name

of a module, then only predicates defined in that module can be assigned by binding. If ModName is given as a

(placeholder) variable or the module prefix is missing then any compatible predicate is accepted.

Binding of a flexible predicate is process-specific, i.e., any modification in the state of a flexible predicate

performed in one process is not visible for other processes.

Note that the predicate, which is supplied as the actual binding, does not have to be exported; it also may be

any compatible local procedure in the module where bind/2 is called. The important condition is that both

arguments of bind/2 must be visible at the place where the call is issued.

The binding so created can be subsequently changed by another bind/2 call, or can be destroyed by an

unbind/1 call. A call of a currently unbound flexible predicate raises an exception, regardless of the current

value of the unknown Prolog flag.

2.6 Predicates with callable arguments

Some predicates have input arguments the final purpose of which is to be called as metacall during execution

of the predicate. Let's call these predicates generic predicates. E.g. the ’\+’/1 or catch/3 built-in predicates are

called with argument(s) that are callable terms, and are invoked as a metacall later. When a metacall is

performed, it is interpreted always within the module of the metacall. So there is a problem if a generic

predicate is exported and is called from another module since the metacall will not find the called procedure in

its own module. The call of a generic predicate has to append information to callable arguments about the

module where these arguments are defined as procedures. By this it will be ensured that, when the argument

appears subsequently as a metacall, the appropriate procedure definition can be located. This is done by the so-

called module name expansion mechanism.

When calling a generic predicate, the argument(s) are expanded, the module name is prefixed to them. But for

this purpose instead of the

:

infix operator the

$:

infix operator is used. The meaning of this operator is similar to the meaning of the normal module prefix

operator, but makes it possible to call non-public predicates, too.

For those built-in predicates that need it, module name expansion is done automatically by the system. For

user-defined predicates, the expansion can be achieved by an explicit declaration of a meta_predicate

directive. If an argument is declared as a procedure argument, the system will expand the argument whenever

the predicate is called. E.g. the ’+\’/1, and catch/3 built-in predicates have automatically the following

meta_predicate directive:

:-meta_predicate(\+(:)).

:-meta_predicate(catch(:,?,:)).

If a predicate is imported and it has a meta_predicate declaration in the module where it is exported, this

declaration has to be repeated in the importing module, too.

Chapter 3: Input/Output System

29

3. Input/Output System

3.1 Sources and sinks

A source/sink is a basic notion when speaking about input/output. A program can output results to a sink or

input data from a source.

An example for a source/sink can be a file or the user's terminal. Each source/sink is associated with a

sequence of bytes that can be read from it or that were written out to it. A specific source/sink (possibly a file

name) can be given as argument to the open/[3,4] predicate, and later all subsequent references (read or write)

are made using an internal representation or an alias (see section 3.3).

3.2 I/O modes

An I/O mode is an atom defining the I/O operations that may be performed on a source/sink. This atom is an

argument of open/[3,4]. CS-Prolog supports the following I/O modes:

read

The read mode is used if the source/sink is a source. If it is a file, it already has to exist.

write

The write mode is used if the source/sink is a sink which is initially empty. If it is an already

existing, the previous contents will be lost.

append

The append mode is used only if the source/sink is a sink. When it is an existing file, output

starts at the end of that file. When the sink is not an existing file, this I/O mode is equivalent

with write.

3.3 Streams and aliases

A stream identifier identifies a stream during a call of an input/output predicate. It is a ground term created

when a source/sink is opened by a call of open/[3,4]. The actual form of this term is not important because it

cannot be generated by the user.

Any stream may have an associated stream alias. A stream alias is an atom, which may be used to refer to that

stream. An alias can be created at the time when the stream is opened, and the association is automatically

destroyed when the stream is closed. A particular alias refers to at most one stream at any one time. All built-in

predicates that have a stream identifier as an input argument accept a stream alias for that argument as well.

However those predicates which return a stream identifier in an argument never return or accept a stream alias

(such a predicate is e.g. current_input/1 or stream_property/2 etc.).

3.4 Standard streams

Three streams, the standard input, standard output and standard error stream, are predefined and cannot be

closed. The standard input stream has the alias user_input, the standard output stream has the alias

user_output, and the standard error stream has the alias user_error. These streams are set up by the operating

system for the CS-Prolog runtime. By default, all the three are connected to the control terminal, unless

redirected.

3.5 Current streams

During execution, there is always a current input stream and a current output stream. When an input predicate

does not have an explicit stream identifier argument, it reads from the current input stream. Similarly, when an

output predicate does not have an explicit stream identifier argument, it writes to the current output stream.

By default, the current input and output streams are the same streams as the standard input and output streams,

but the built-in predicates set_input/1 and set_output/1 can be used to change them.

CS-Prolog Language

30

When the current input stream is closed, the standard input stream automatically becomes the current input

stream. Since the standard input stream cannot be closed, this guarantees that the current input stream always

refers to an open stream. The case with output is similar.

3.6 Memory streams

A memory stream is a stream created by open/4 using a special open option (see section 3.8); it is a source/sink

that resides in the memory. During execution the program can write to it, then reopen it with reopen/3, and

then read from it. It can be useful for converting terms to atoms and vice versa, or for simply storing temporary

information.

The contents of a memory stream is lost after the stream is closed or after the termination of the program.

3.7 Stream positions

A stream position is a ground term, which identifies an absolute position within the source/sink to which the

stream is connected. It is maintained by the system and can be obtained using the predicate

stream_property/2.

At any time, the stream can be repositioned by calling set_stream_position/2.

Not all streams can be repositioned; disk files and memory streams can.

On a platform where binary and text file formats differ, repositioning a text file can give unexpected results.

(Repositioning to the beginning of file is always safe.)

3.8 Options on stream creation

When a stream is created with open/4 certain options can be specified in an option list argument. The

permitted options are:

type(T)

T = text or binary. Specifies whether the stream is a text stream or a binary stream. Default is

text.

reposition(Bool)

Bool = true or false. When Bool = true checks if it is possible to reposition the stream to a

previously visited position. If this is not possible for the particular source/sink, open/4 raises an

exception.

alias(A)

A is an atom. Specifies that the atom A is to be the alias for the stream. open/4 raises an

exception if this alias already refers to an open stream.

eof_action(Act)

Act = error, eof_code or reset. The atom Act specifies the effect of attempting to read past the

end of a stream. If it is error, an existence_error exception is raised, signifying that no more

input exists in this stream. If Act = eof_code, the normal end-of-stream marker is returned, i.e.

end_of_file for term input and character input, and -1 for byte input. If Act = reset, the stream

is reset and another attempt is made to read from it. This is likely to be useful when reading

from a device such as a terminal. This action sets the stream not to be in past_end_of_stream

state and may also perform some operation to reset the source to which the stream is attached.

Default for eof_action is error. This option is valid only for input streams.

stream_type(F)

F = file or memory. Specifies the type of stream. Default is file.

line_len(N)

N is an integer. Specifies the maximum line length for a sink. If a write predicate outputs a term

and the output length would exceed N, the term is split into two or more lines. This option is

valid only for output streams and has effect only on term output (write built-in predicate family).

If the option list contains conflicting options, the rightmost one applies.

Chapter 3: Input/Output System

31

The following three are legal open options but contain redundant information, so they are rarely used (possibly

only for verification). If any of these options is incompatible with the value of another argument of open/[3,4],

an exception is raised.

input

The stream is a source. It can be specified if the I/O mode is read.

output

The stream is a sink. It can be specified if the I/O mode is write or append.

file_name(N)

N is an atom. N is the file name of the source/sink. Its value has to be the same atom as the first

argument of open/[3,4]

mode(M)

M is an atom, the I/O mode of the source/sink. Its value has to be the same atom as the second

argument of open/[3,4]

3.9 Stream properties

Various properties of streams can be accessed via the predicate stream_property/2. The

stream_property(Stream, Property)

call returns various stream-property pairs. The values of Property can be the following:

file_name(F)

When the stream is connected to a source/sink which is a file or a memory stream, F is the name

of the file which is the source/sink for the stream. (In case of memory streams, it is a virtual

name.) The standard streams have file names user_input, user_output, user_error.

mode(M)

M is unified with the I/O mode specified when the source/sink was opened; its value can be read,

write or append.

alias(A)

If the stream has an alias, then A is that alias.

position(P)

If the stream has the reposition(true) property, P shall be matched with the current stream

position of the stream.

reposition(B)

If repositioning is possible on the stream then B is unified with true, else B is unified with false.

type(T)

The value of T defines whether the stream is a text stream (T = text) or a binary stream (T =

binary).

input

This stream is connected to a source.

output

This stream is connected to a sink.

stream_type(T)

The value of T defines whether the stream is a standard stream (T = standard), a file stream

(T = file), or a memory stream (T = memory)

eof_action(Act)

For sources, it returns value of eof_action option specified when opened the source.

line_len(N)

For sinks, it returns N = 0 if the stream was not open providing a line_len open option, otherwise

returns the value of the open option.

line_count(L)

Unifies L with the number of lines read in or written out.

line_position(P)

Unifies P with the number of characters read in or written out in the last line.

CS-Prolog Language

32

char_count(N)

Unifies N with the total number of characters read in or written out.

3.10 Read options

A read options list is a list of various options, which affect the read_term/ [2,3], and tread_term/3 predicates.

The options are:

variables(Vars)

After reading a term, Vars is matched with the list of the variables in the term, in left-to-right

traversed order. Anonymous variables are included in the list.

variable_names(VN_list)

After reading a term, VN_list is unified with a list of elements where each element is a term

V = A

and V is a named (non-anonymous) variable of the term, and A is an atom whose characters are

the character of V. The anonymous variables (the variables denoted by '_') are not included.

singletons(VN_list)

After reading a term, VN_list is unified with a list of elements where each element is a term

V = A

V is a named variable of the term which occurs only once in the term, and A is a (quoted) atom

whose characters are the characters of V (i.e. the quoted version of the token V). The anonymous

variables (denoted by '_') are not included.

3.11 Write options

A write options list is a list of various options, which affect the write_term/[2,3] predicates. The

options are:

quoted(Bool)

Bool = true or false. When Bool is true, each atom and functor is quoted if this would be

necessary for the term to be read as data by read_term/3.

ignore_ops(Bool)

Bool = true or false. When Bool is true, each compound term is output in functional notation.

Neither operator notation nor list notation is used when this option is in force.

numbervars(Bool)

Bool = true or false. When Bool is true, a term of the form '$VAR'(N), where N is an

integer, is output as a variable name consisting of an upper-case letter possibly followed by an

integer. The upper-case letter is the i+1-th letter of the alphabet, and the integer is j, where

i = N mod 26

j = N / 26

The integer j is omitted if it is zero. For example, '$VAR'(1) is written as B, or

'$VAR'(26) is written as A1.

maxdepth(N)

Compound subterms at nesting level N will be output as '*'. The tail of a list longer than N

elements will be output as '...'.

variable_names(VN_list)

VN_list has to be a list where each element of this list is a term of form

V = A

V is a variable contained in the term to be output, and A is an atom. When writing out the term

each occurrence of V will be replaced by the characters of A.

The first three options can also be given in short form, without argument. The

quoted, ignore_ops, numbervars

option specifications are equivalent, respectively, with

quoted(true), ignore_ops(true), numbervars(true)

Chapter 3: Input/Output System

33

3.12 Reaching end of stream

At the end of a stream, it is still valid to call an input predicate that returns a specific value to indicate that end

of stream has been reached. The character code and the byte input predicates (get_code/[1,2] and

get_byte/[1,2]) return the integer -1. The character and term reading predicates return the atom end_of_file.

When one of these terminating values has been read, the stream is said to be in state past_end_of_stream. It

depends on the value of the open option eof_action what happens if input is performed on a stream, which is

past_end_of_stream (see section 3.8).

3.13 Text and binary streams

There are two types of streams: text streams and binary streams. There is a separate set of predicates that input

or output data for each of these types. To read or write data to a text stream the character and the term

input/output predicates can be used, for binary streams the byte input/output predicates can be used.

The type of a stream can be set by a stream option when opening the stream (see section 3.8). Every stream has

a property showing its type.

A text stream consists of a sequence of characters. Characters are represented in CS-Prolog as one-char atoms.

For every character there is a number between 0 and 255, the ASCII code of the character which is called

character_code.

The set of characters extended with the end_of_file atom is called in_character; the set of

character_codes extended with the number -1 is called in_character_code

A binary stream consists of a sequence of bytes. A byte is a number between 0 and 255. The set of bytes

extended with the number -1 is called in_byte

3.14 Character and term input

There are two different ways of getting input from a text source. A source can be considered as a

- sequence of characters (atoms consisting of one character),

- sequence of Prolog tokens and Prolog terms

The different input built-in predicates - the get_char or get_code family and the read family - can be used in

mixed way for the same stream. That means that after reading a byte from a source the program can perform

character input and then read term form the same stream.

The term input can be done in CS-Prolog in two ways. The first of them - with predicate read_term/3 and its

relatives - is the traditional read predicate of Prolog languages. It consists of reading tokens from the selected

source until a period (end token) is found. Then forming a valid Prolog term from the tokens is attempted, and

the end token is discarded. Therefore, in this case every term to be read in has to be terminated by an end

token. The following character sequence does not constitute a legal input for a read_term/3 (supposing that

hello is not a postfix operator):

foo + coo hello.

The other set of read predicates consists of the tread_term/3 and its relatives. These predicates try to read

tokens from the input as long as they form a valid Prolog term. If a token is found in the stream that cannot be

included into the term, then the reading stops, leaving that token in the stream. For example, if the input

stream contains the characters shown above, tread_term/3 would read the term

foo + coo

leaving the token hello in the stream. But, as this token had to be physically read from the stream, if a byte

or character input is performed later, it will read characters from the stream that are after the token hello.

This token will be included in the consequent term input.

So mixing the tread_term-like and the character (or byte) input can produce unexpected results. E.g. as it is

explained in the previous paragraph, a get_char can return a character, when several characters before it in

the source (that form the token read ahead) remain unread. Similarly the line_count, line_position,

char_count and position stream properties return the real state of the source stream, not taking into

consideration that some of them did not yet appear in Prolog level.

CS-Prolog Language

34

4. Exception handling

During the execution of a program various exceptional situations can occur. Such events happen if an error is

detected in a built-in predicate, or external interrupt is signaled from the operating system, or a system

resource gets exhausted (memory, disk space), and so on. If such a situation takes place and there is no method

provided to handle it, the execution of the program stops, possibly writing out an error message.

The exception handling mechanism of CS-Prolog gives the possibility for the programmer to deal with

exceptional situations so that in most cases the program can recover from errors without outside intervention.

An artificial error situation can be provoked by calling a specific built-in predicate. With an appropriate

exception handler, it can be used to jump out from the middle of an execution flow (see throw/1).

4.1 Format of error terms

The exception handler is informed about the error event. Every error or interrupt is represented by a Prolog

term. A user-defined error term can be an arbitrary Prolog term, but the errors and interrupts signaled by the

runtime system have standard format. The standard error terms are the following:

instantiation_error

type_error(ValidType, Culprit)

domain_error(ValidDomain, Culprit)

existence_error(ObjectType, Culprit)

permission_error(Operation, PermissionType, Culprit)

representation_error(Flag)

evaluation_error(Error)

consistency_error(ConflictType, Culprit)

syntax_error(SyntErrAtom)

resource_error(Resource)

interrupt(InterruptName, InterruptData)

system_error

clp_system_error

The meaning of the arguments of an error term is the following.

Culprit

The term which caused the error. This is usually an argument of the erroneous goal, but can also

be a subterm of an argument. For consistency error and certain types of domain error Culprit

is a pair (of two items connected by ‘+’) involved in the conflict. In the special case of trying to

read past the end of a stream, the Culprit is the atom past_end_of_stream.

Flag

One of the following atoms, indicating the type of a representation error:

character

character_code

in_character_code

max_arity

max_integer

min_integer

max_atom

max_format

max_message

max_term_size

max_path_in_clause

max_call_in_clause

max_call_in_path

max_clause_complexity

ValidType

One of the following terms. They indicate the legal term type for the culprit.

variable

constrained_variable

atom

integer

float

compound

list

Chapter 4: Exception handling

35

atomic

byte

callable

character

evaluable

in_byte

in_character

number

predicate_indicator

table_key

periodicity

clp_expression

clp_evaluable_expression

clp_solver_selector

ValidDomain

One of the following terms. They indicate the range where the culprit should have been in.

character_code_list

close_option

flag_value

io_mode

non_empty_list

not_less_than_zero

positive_number

operator_priority

operator_specifier

prolog_flag

bracket_priority

read_option

source_sink

stream

stream_option

stream_or_alias

stream_position

stream_property

write_option

unique_name

channel_mode

radix

maxdepth

timeout

queue_size

net_init_mode_option

net_close_mode_option

net_partner_limit

option

net_config_option

explicit_netobj_name

ip_addr

ip_port

netconfig_action

net_attr_value

(un)conditional

mediator_kind

hnms_option

bracket_name_component

module_name

proper_list

ground_term

clp_relation_functor

clp_linear_expression

clp_evaluable_linear_expression

valid_formula_for_clp_solver

installed_clp_solvers

ObjectType

One of the following atoms indicating the type of the culprit causing the error:

procedure

source_sink

stream

module

event

CS-Prolog Language

36

process

term

channel

control

netobject

nethost

netservice

Operation

One of the following atoms indicating the type of the action that caused the error:

access

create

input

modify

open

output

reposition

remove

parallel

bind

unbind

Error

One of the following atoms indicating the type of the arithmetic error encountered:

float_overflow

int_overflow

undefined

underflow

zero_divisor

bad_float

bad_format_item

PermissionType

One of the following atoms indicating the type of the culprit for which an invalid operation was

requested:

binary_stream

flag

operator

past_end_of_stream

control_construct

built_in_procedure

private_procedure

static_procedure

source_sink

stream

text_stream

process

channel

backtrackable_procedure

nonbacktrackable_procedure

local_proc

non_flex

part_flex

wrong_procedure

would_create_loop

event

value

netobj_name

netobject

net_attribute

net_buffering_limit

bracket

Resource

One of the following atoms indicating the type of the resource that has been exhausted:

memory

disk_space

open_streams

SyntErrAtom

An atom denoting indicating the type of the syntax error.

Chapter 4: Exception handling

37

ConflictType

One of the following atoms indicating the type of the conflict detected:

netaddr

selfhost

identical_bracket_name_components

InterruptName

One of the following atoms indicating the type of the interrupt:

user

program

task_imeout

InterruptData

Any term

For each category above where a taxative enumeration is given, an atom beginning with the prefix unknown_

can also appear (e.g., unknown_interrupt_name), which indicates an internal error in the runtime

system.

4.2 Additional information term on exceptions

There are several important data items not included in the error terms, which may be needed for an appropriate

exception handler. These items are:

Goal

The goal which was executed when the exceptional situation occurred. The special value, the

integer 0, is given as Goal in the case where the system is not able to supply the Goal or where

there is no one particular Goal that caused the error. It contains a module prefix indicating the

module where the error occurred.

ArgNo

An integer in the range 0..max_arity indicating which argument of Goal caused the error.

ArgNo = 0 means either that no one particular argument caused the error, or that the system is

not able to determine which argument caused the error.

Other

A list containing other relevant information. In most exceptions cases its value is the empty list.

These terms are combined into a list forming the so-called error info . It is provided by the system for the

exception handler together with the error term. The error info is a list that has at least two arguments:

[Goal, ArgNo | Other]

4.3 Error terms

In the description of error terms, we will refer to the elements of the error info term: Goal, ArgNo and Other.

4.3.1 Instantiation error

instantiation_error

Goal is not sufficiently instantiated for the call. It means that the ArgNo-th argument or a subterm of the

ArgNo-th argument is an unbound variable, and it is not legal. If ArgNo is ambiguous its value can be zero.

Examples:

X is 1 + Y.

instantiation_error, (error_info = [mod $: _ is 1+_, 2])

functor(_, _, 20).

instantiation_error, (error_info = [mod $: functor(_,_,20), 0])

CS-Prolog Language

38

4.3.2 Type error

type_error(ValidType, Culprit)

The type of the ArgNo-th argument or the type of a subterm of the ArgNo-th argument is incorrect. A type

error is never caused by a term being an unbound variable, that is an instantiation error. A type error can be

caused by a term being a non-variable where a variable is required.

Examples:

assertz(42).

type_error(callable, 42)

X is a + 12.

type_error(number, a)

open(file, read, name).

type_error(variable, name)

4.3.3 Domain error

domain_error(ValidDomain, Culprit)

The type of the ArgNo-th argument is correct but the value is outside the range for which the predicate is

defined. Also may occur when a named option is processed (either of the form keyword(value) in an option

list, or keyword and value as separate arguments of the call) and value is not allowed for keyword. In this

case Culprit has the form keyword+value.

Examples:

arg(-1, a(1,2), A).

domain_error(not_less_than_zero, -1)

op(1300, xfy, #).

domain_error(operator_priority, 1300)

port_current_attribute(_, advertised, yes). % Allowed values: on, off !

domain_error(net_attr_value, advertised+yes)

4.3.4 Existence error

existence_error(ObjectType, Culprit)

The object on which an operation is to be performed does not exist.

Examples:

undef(arg). /* undef/1 predicate is not defined) */

existence_error(procedure, undef/1)

open(missing_file, read, S).

existence_error(source_sink, missing_file)

4.3.5 Permission error

permission_error(Operation, PermissionType, Culprit)

It is not permitted to perform the specified Operation on the specified Culprit, which has type

PermissionType.

Examples:

assertz(var(1)).

permission_error(modify, static_procedure, var/1)

get_char(user_output, C).

permission_error(input, stream, user_output)

Chapter 4: Exception handling

39

4.3.6 Representation error

representation_error(Flag)

An error in trying to represent the result of a computation. Some limit has been exceeded.

Examples:

char_code(C,566)

representation_error(character_code)

functor(T, a, 1000).

representation_error(max_arity)

4.3.7 Evaluation error

evaluation_error(Error)

Operands of an evaluable functor are such that the operation has an exceptional value.

Examples:

X is 65536 * 65536.

evaluation_error(int_overflow)

X is log(-1).

evaluation_error(undefined)

4.3.8 Consistency error

consistency_error(ConflictType, Culprit)

Two distinct operands or sub-operands in an operation are incompatible with each other, although each of

them is valid in itself. This error can occur in manipulating complex system objects, mainly in connection with

networking.

Examples:

community_change_config(add_private, [[self, hostname(foo)]]).

consistency_error(selfhost, self+foo)

The error indicates that foo is not known as being the symbolic name (or one of the aliases) of the host

computer where the program is running.

4.3.9 Syntax error

syntax_error(SyntErrAtom)

Characters that should form a Prolog term are syntactically invalid. It can occur while executing the term input

procedures (read_term/3, tread_term/3).

4.3.10 Resource error

resource_error(Resource)

The runtime system ran out of some resource while executing. This resource can be for instance the memory

allowed for the CS-Prolog system or the disk space when writing out to a file.

4.3.11 System error

system_error

A system error arises only when the runtime system encounters some error situation, which does not

correspond to any of the other error classes. In most cases, this arises either in interactions with the operating

system, or because of some error in the organization of the program. If possible, the Other element of the error

info term gives some available information about the system error.

CS-Prolog Language

40

4.3.12 Interrupt

interrupt(InterruptName, InterruptData)

Some event from the outer world interrupted the execution. This interrupt can come from the operating system

(user interrupt), or from an other part of CS-Prolog (time-out, interrupt caused by another process).

The user interrupt is routed to the main process in the first place. If it is already in terminated state, then the

system is stopped with a corresponding error message.

Examples:

Interrupting the execution with Ctrl-C will cause

interrupt(user, [])

exception in execution of the main process.

4.3.13 CLP System error

clp_system_error

This error can occur only in a system with CLP extension enabled, and only when a solver is active. It

indicates some internal error detected by the CLP organizer module or an active solver. The Other element of

the error info term gives some available information about the error, either in textual or in numerically coded

form.

4.4 Error handling procedures

There are two ways to handle an error in CS-Prolog. The first (predicate catch/3) is simpler to use, but it offers

less possibilities to define the action to be taken in case of error. The other (with predicate protected/3) is

more complicated, but allows using techniques that are more sophisticated. The two possibilities can be used

together in the same program.

Both predicates establish a safeguarded environment for a goal, and can deal with exceptions raised during the

execution of this goal. During the execution of a protected goal, new protected environments can be set up with

subsequent calls of catch/3 or protected/3. These nested environments will be referred to as protection levels.

When an exception arises at run time, the system searches the ancestors of the current call to find a call of

catch/3 or protected/3 predicate. The nearest suitable one will determine what type of exception handling is

invoked. These methods are described in the next sections. If the handling fails, the exception is passed to the

next outer protection level, that is, to the nearest ancestor catch/3 or protected/3 call. The outermost level is

defined by the run-time system, outside the user program. The system level error handling consists of writing

out a standardized message and stopping with error. If the handling succeeds, it also defines some corrective

action to be taken.

Note that the subsequent descriptions are conceptual only; the actual implementation is somewhat more

complicated because the two distinct protection mechanisms are merged into one nesting chain.

The user can also raise any exception via the throw/1 predicate. As a special case, a standard exception term

can be thrown which will be indistinguishable from the corresponding exception raised by the system.

4.5 Error handling with catch/3

To create a protected environment for a call, invoke it through the catch/3 predicate:

catch(Goal, Catcher, Recovery)

The system sets up the protection environment, and begins evaluating Goal. If Goal succeeds or fails, so will

the catch/3 call, too. If, however, any error is signaled during the execution of the Goal, and the error is not

handled at an inner level, then the control returns to the catch/3 predicate. The possible variable bindings and

backtrackable side effects that occurred while executing Goal are undone, as if Goal had fail-ed. Catcher

is then unified with the (copy of the) error term, and if the unification succeeds then the Recovery call is

executed (as a replacement for the original catch/3 call). Otherwise, if the unification fails, then the exception

cannot be handled at this level, and so it is passed to the next protection level (to the nearest protected/3 or

catch/3 ancestor, or to the system level handler).

Chapter 4: Exception handling

41

The execution of Recovery is not protected from exceptions by this catch. If we want it to be protected, it has

to be a call of catch/3 (or protected/3) itself.

Examples:

catch(Goal, Y, true).

This call protects the Goal call from every error. If during the evaluation of Goal an exception is raised, the

execution will continue with successful termination of the catch/3 call.

catch(Goal, existence_error(file,FN), inform(FN)).

This call will handle all existence errors raised during the execution of Goal if the error was caused by a

non-existent file. The execution will continue with calling the inform/1 user defined procedure with the name

of the missing file.

4.6 Error handling with protected/3

The idea of error handling by this method is the following: a goal may be executed in a protected environment.

When an exception occurs during the execution of this goal, the nearest exception handler will be executed. If

this handler fails, that means that it is not prepared to cope with the error, so a higher level protection must

deal with the situation instead. In order to handle the exception the handler must succeed. It passes then two

items to the system: a replacement goal, and a decision about which call is to be replaced by it. There are three

choices:

Replace the erroneous or interrupted call (‘on the spot’ - not always possible);

Replace the call of the original goal (preserving its safe environment) at this level of protection;

Replace the entire protected call removing this level of protection.

To establish this kind of protected environment for a goal Goal, call it using the protected/3 built-in predicate:

protected(Goal, Handler, UserTerm)

It executes Goal and if during the execution an exception happens, then the system calls the Handler/5

predicate supplying it with five arguments as explained below. (Let's suppose the value of Handler is

handler_name)

handler_name(ErrorTerm, ErrorInfo, UserTerm, UnwindChoice, Result)

If the call of the exception handler fails, the exception will be propagated to the next higher level of protection.

If the exception handler succeeds, it gives the information how to continue the execution. The meaning of

arguments supplied to the error handler is as follows:

ErrorTerm is the error term.

ErrorInfo is the additional error information list (see section 4.2)

UserTerm is the third argument of the appropriate protected call (in its current

instantiation state); it can be used to pass additional data to generalized handlers.

UnwindChoice and Result are output arguments. The system invokes the handler_name

procedure with unbound variables in the output (fourth and fifth) argument positions. If the call

succeeds, then Result is expected to be bound to a callable term that will be called after the

handler terminates — it replaces the interrupted call, or the goal argument of its appropriate

protected ancestor, or the entire protected ancestor, depending on the value of

UnwindChoice. UnwindChoice = 0 (number zero) means that the handler handles the error

‘on the spot’, where the exception occurred. UnwindChoice = 1 (number one) means

replacing the call of the goal argument of this protected with Result and executing it.

UnwindChoice = 2 means replacing the entire protected call with Result, deleting this level

of protection. Any other value of UnwindChoice causes a system error.

If UnwindChoice is not zero, the possible variable bindings and backtrackable side effects that occurred

while executing Goal (first argument of protected) are undone (‘unwound’), as if the Goal had fail-ed.

Note that handlers usually are evaluated in the environment where the error occurred, but the replacement goal

can be executed after unwinding several levels. For this reason, instead of the Result term supplied by the

handler, a systematically renamed copy of that term is used as the replacement if unwind is requested.

CS-Prolog Language

42

Practically this means that if any unbound variable from Goal and/or UserTerm occurs in Result too, then

it is replaced by a new unbound variable (detached from the original).

As it was explained, protected environments may be nested. In order to avoid an infinite cycle of repeated

exception handling, any exception occurring during the execution of a handler will be passed to the next

higher protection level, including the case when any of the output arguments are incorrect.

If an interrupt arrives to a process that is executing an exception handler, the interrupt is delayed until the

actual exception handling is finished. This means, that the interrupt will cause an exception only when the

original (protected or unprotected) environment is restored. If an exception handling process takes too long

time in a program where many interrupts are caused for the actual process, it can produce an interrupt queue

overrun error.

There are some severe errors, which cannot be handled on the spot. For these, before the handler is invoked the

system unwinds the innermost protected environment. These severe errors are:

resource_error(_, memory, [stack])

resource_error(_, memory, [heap])

resource_error(_, memory, [trail])

system_error(_, [mode_in])

system_error(_, [mode_out])

The first three are raised when one of the main memory areas is full. The mode errors are signaled when an

argument of a procedure is declared as input or output argument (see the meta_predicate directive,

section 1.2.1) and the current value contradicts to this declaration.

4.7 Signaling errors

A program may artificially signal error conditions. Using the throw/1 built-in predicate, it is possible to make

the system act as if a given error had occurred. The error term will be the argument of the throw/1 predicate; it

can be an arbitrary Prolog term.

This possibility can be used to jump out from the execution of a goal if something has gone wrong. For

example, let's suppose that

catch(do_something, my_break, true)

is called, and we are executing the do_something goal, a

throw(my_break)

call is invoked. In this case the system will abandon the execution of do_something, and will continue with

successful termination of this catch/3 call.

4.8 Error handling example

The following program demonstrates the use of error handling methods of CS-Prolog.

In this example, the execution is protected with a catch/3 from any error. If an exception occurs the error

message is written out and the program is re-executed. The steps of execution are protected by a protected/3

predicate. The handler will catch the user interrupt, and the user can determine what to do, continue, skip one

step and continue with the next or break the execution. For other interrupts, the handler calls a specific goal to

deal with the event and than continues with the execution of the interrupted call. Finally, the handler catches

the file operation errors where a non-existing file name is given. The user is prompted to enter the corrected

file name and the program retries the file operation. Other exceptions are not handled, so they are propagated

to the higher level catch/3.

program :-

 catch(execute, ERR, recover(ERR)).

recover(ERROR):-

 inform_on_error(ERROR),

 program.

execute:-

 is_end, !;

 protected(one_step,s_hand,0),

 execute.

Chapter 4: Exception handling

43

s_hand(interrupt(user,_), [Call|_], 0, Unw, Res):- !,

 write('Interrupted, choose '), nl,

 write(' c -continue'), nl,

 write(' s -skip this step'), nl,

 write(' else -break'), nl,

 get_char(Answ),

 (Answ = 'c', /, Unw = 0, Res = Call;

 Answ = 's', /, Unw = 1, Res = true;

 fail).

s_hand(interrupt(IName,IData), [Call|_], 0, 0, Call):- !,

 handle_interrupt(IName,IData).

s_hand(existence_error(file,FN),[C,1|_] 0, 0, Call):-

 replace_filename(C,FN,Call), !.

replace_filename(C,FN,Call):-

 write('Non existing file '), write(FN), nl,

 write(' enter new file name: '),

 get_line(New_FN),

 C =.. [FU, _ | Rest],

 Call =.. [FU, New_FN | Rest].

one_step:-

handle_interrupt(...

is_end :- ...

inform_on_error(...

...

CS-Prolog Language

44

5. Preprocessor

The CS-Prolog compiler incorporates a preprocessor. It is a clone of the usual preprocessors for the C

language, with the difference that Prolog operators are used in the expressions for conditional compilation.

Only the compiler accepts preprocessor commands; there is no input procedure that would recognize such

constructs at runtime.

The advantage of use of a preprocessor is that using macros the source can be made more readable, more

accurate. Using header (include) files makes the interface between different modules cleaner, conditional

compilation (ifdef) makes possible to keep in one source several versions of the same program, and there are

many more benefits. It has to be mentioned, however, that this technique (natural in the C language) is not

customary in Prolog. It can be confusing for instance to have a macro name with capital letters denoting an

atom, because in the source it can easily interpreted as a variable. We hope though that the advantages of a

preprocessor are worth to incorporate it in the system.

The preprocessor accepts directives that begin always with a # (hash mark) character, preceded only by

whitespace on the line. The following sections describe the specific directives.

5.1 Macros

#define name token-string

Replace subsequent instances of name with token-string. After the replacement, the preprocessor re-

starts to scan the token-string to expand eventual macros in it.

#define name(arg, ..., arg) token-string

(Notice that there cannot be spaces between name and the open parenthesis.) Replace subsequent instances of

name followed by an open parenthesis, a list of comma-separated sets of tokens, and a close parenthesis with

token-string. Each occurrence of an arg is replaced by the corresponding set of tokens in the comma-

separated list. When a macro with arguments is expanded, the arguments are placed into the expanded token-

string unchanged. After the entire token-string has been expanded, the preprocessor re-starts its scan for names

to expand at the beginning of the newly created token-string.

#undef name

Cause the definition of name (if any) to be forgotten from now on. No additional tokens are permitted on the

directive line after name.

Examples:

#define line_length 80

Using this macro, if in the source there is somewhere the line_length atom it will be replaced with the

number 80.

#define INCR(x,x1) x1 is x+10

With this macro definition the operation of increasing a value can be standardized in the program. If later it is

needed to increase by 20 instead of 10, only the macro definition has to be changed.

5.2 Include files

#include "filename"

#include <filename>

Include at this point the contents of filename (which will then be scanned by the preprocessor). When the

<filename> notation is used, filename is only searched for in the standard places. Standard directories

can be given setting the environment variable CSPINC to a colon separated list of directory paths. (See the -I

option of the compiler, chapter 33.) When the "filename" notation is used, filename is searched first in

the current working directory and, if it is not found, then in the standard places. No additional tokens are

permitted on the directive line after the final " or >.

Include files can be useful when different modules contain the same code fragment (e.g. some common macro

definitions). This directive can be nested, that is include files can contain include directives.

Chapter 5: Preprocessor

45

5.3 Conditional compilation

The basic construct of conditional compilation is a conditional block built according to the following scheme:

#if condition... (or #ifdef or #ifndef - see later)

 if-section-body

#elif ..condition (any number of occurrences, including 0)

 elif-section-body

#else (optional - 0 or 1 occurrences)

 else-section-body

#endif

The block consists of at least one section and a closing #endif directive. Each section begins with a section-

control directive, which is followed by any number of source lines constituting the section body, up to the next

section or the block end. The effect of the construct is that during preprocessing the whole block is either

removed or is replaced by one of the section bodies, depending on the result of the sequential evaluation of the

section control directives. After replacement preprocessing continues from the beginning of the substituted

section body; after removal - immediately behind the removed block.

Conditional blocks can be nested up to 16 levels deep.

The result of the evaluation of a section control directive is an integer value. The first section for which the

evaluation yields a non-zero result is selected for replacement.

The value of the #if and the #elif directives is the result of the evaluation of the condition part of the

directive after macro symbol substitution. The value of the #else directive is always 1.

The condition is a special constant expression. After macro symbol substitution it must be a syntactically

correct expression built from integers and atoms as primary (terminal) expressions. Compound expressions can

be built like expressions for arithmetic evaluation using operators, parentheses, and a special function

defined (c.f. Arithmetic evaluation in PART III), with the following differences:

The set of allowed operators is different;

Relation operators can also be used in subexpressions, not only at the outermost level;

Relation operators and logical operators yield integer value 1 when they hold and 0 otherwise;

Atoms remaining in the expression are regarded as undefined macro symbols and during evaluation

they are replaced by the integer value 0 except in the argument position of the function defined.

The evaluation is performed in 32-bit integer representation;

Some operators are represented in more then one form (to allow for intuitive meaning, and to

resemble C preprocessor directives).

The following basic operators are defined (in order of decreasing priorities):

\+ - (logical not, prefix arithmetic negation)

* / << >> (multiplication, integer division, arithmetic left shift, arithmetic

right shift)

- + \/ /\ (subtraction, addition, bitwise or, bitwise and)

< <= == >= > \= (arithmetic ordering relations)

&& || (logical and, logical or)

Alternative operator symbols accepted:

// (for /)

=:= = (for ==)

=\= \== (for \=)

 =< (for <=)

Logical (truth) values are coded as 1 for true and 0 for false. Arithmetic operators are evaluated as usual.

Arithmetic relation operators yield coded truth-values according to whether or not the respective relation holds.

CS-Prolog Language

46

Logical operators implicitly transform their operands before taking effect into coded truth-values. (0 for zero, 1

for non-zero value).

The special function defined(name) results in 1 (true), if name has been the subject of a previous #define

without having been the subject of an intervening #undef, otherwise it yields 0 (false).

The effect of the individual conditional compilation directives according to the general scheme is as follows:

#if constant-expression

Lines following this directive up to the nearest associated directive (#elif, #else, or #endif at the same

level) will be preprocessed (and compiled) if and only if constant-expression evaluates to non-zero.

#ifdef name

This directive is equivalent with #if defined (name)

#ifndef name

This directive is equivalent with #if \+defined (name)

#elif constant-expression

An arbitrary number of #elif directives is allowed between a #if, #ifdef or #ifndef directive and the

nearest associated #else or #endif directive (explained below). The lines following the #elif directive up

to the nearest associated directive (#elif, #else, or #endif at the same level) will be preprocessed (and

compiled) if and only if the test directive (#if, #ifdef or #ifndef) starting the conditional block and all

intervening #elif directives evaluate to zero, and constant-expression evaluates to non-zero. If

constant-expression evaluates to non-zero, all succeeding #elif and #else sections within this

conditional block will be ignored.

#else

The lines following this directive up to the associated #endif (at the same level) will be preprocessed (and

compiled) if and only if the test directive starting the conditional block and all associated intervening #elif

directives evaluate to zero. No additional tokens are permitted on the directive line.

#endif

Marks the end of both the conditional block and its last section. No additional tokens are permitted on the

directive line.

Example:

#if defined(dos) \/ defined(os2)

#define MAX_FILE_NAME_LEN 8

#if defined(dos)

#define BAT_EXTENSION '.bat'

#else

#define BAT_EXTENSION '.cmd'

#endif

#elif defined(unix)

#define BAT_EXTENSION ''

#define MAX_FILE_NAME_LEN 44

#endif

This code fragment will set some parameters - numbers and atoms - that can be used later in the program,

depending on the operating system the module is compiled for.

5.4 Predefined macro symbols

The following macro symbols are defined by the calling environment when the preprocessing starts:

__FILE__

Contains the path name of the current input file (from which the line containing the macro

reference had been read).

__LINE__

Contains the line number (within the current input file) of the input line where the reference is

located.

sun

This macro is defined with the value 1 if the preprocessor is running on a Solaris platform. On

other platforms the macro is initially undefined.

Chapter 5: Preprocessor

47

linux

This macro is defined with the value 1 if the preprocessor is running on a Linux platform. On

other platforms the macro is initially undefined.

freebsd

This macro is defined with the value 1 if the preprocessor is running on a FreeBSD platform. On

other platforms the macro is initially undefined.

5.5 Preprocessor command line options

The preprocessor recognizes some command line options. A macro can be defined on command line, and the

standard library path list can be changed (where the include files are searched).

These options are described in details in chapter 33.

PART II

Parallel programming & real-time features

Chapter 6: Introduction

51

6. Introduction

The CS-Prolog system provides possibility to write, develop and run parallel Prolog programs. Independently

from the fact that the host machine and/or operating system has the ability to execute more than one program

at a time, the CS-Prolog system makes possible to develop and execute parallel programs based on its own

capabilities.

The parallelism of the CS-Prolog is defined in the language itself and does not rely on any information about

the underlying machine architecture. However, the CS-Prolog system tries to gain the advantage of the

architecture of the machine on which the CS-Prolog system is installed. Since these pieces of information are

hidden from the user, CS-Prolog programs are portable. It is the CS-Prolog system's task to distribute the

parallel components in the most efficient way on any individual architecture and organize the communication

among the processors.

The CS-Prolog system also provides possibilities to develop and execute applications that respond promptly to

events generated explicitly either outside or inside the CS-Prolog system or implicitly by an inner clock. This

feature enables the user to write real-time applications.

All the parallel and real time features of CS-Prolog are implemented via built-in predicates.

Parallel programming & real-time features

52

7. Basic notions

7.1 Processes

The basic notion of the CS-Prolog's parallelism is the process. Process is defined as the execution flow of a

Prolog goal. The progress of a process is assumed independent from the execution of other processes. Every

process has its own Prolog execution environment and dynamic database. Note that, conceptually, global

values and flexible imported predicates also belong to the dynamic database. Each process can access only its

own dynamic database, which is strictly separated from the other's databases. If a dynamic procedure has

statically compiled clauses, then an individual copy of these clauses is created for each process when the

process is started. In contrast, the static part of the program (the set of statically compiled procedures the

process uses during the execution of its goal, the clauses of which cannot be modified) may be partially or

totally identical with the static part of other processes. For example, processes may execute the same goal.

Normally the static databases are identical; in the case of real multiprocessor architecture, however, there is a

possibility to load different programs on different processors. These programs form a single application by

sharing such system-wide common entities as channels and events (see later).

The separation of dynamic databases ensures that CS-Prolog processes may have influence on each other only

by the CS-Prolog provided communication techniques (message, interrupt, event passing), or through external

objects like files, or through system-wide common resources like Prolog flags.

CS-Prolog programs always execute processes. Even the simplest CS-Prolog program executing a single goal

(the traditional case) appears as the execution of a main process.

Processes are identified by system-wide unique names. The number of processes is limited only by the amount

of the available memory.

CS-Prolog provides the following two kinds of processes:

— self-driven (normal) process

— event-driven (real time) process

The self-driven process is the more usual kind of process, that's why we will call it also a normal process. A

self-driven process is characterized by its goal. The execution of the self-driven process's goal is initiated

simply by its presence in the CS-Prolog system, i.e. once a self-driven process has been created it will begin the

execution of its goal as soon as it gets the control. The non-fatal termination of a self-driven process is also

determined by the (either successful or unsuccessful) termination of its goal. At the moment of its termination

the self-driven process disappears from the CS-Prolog system and will never reappear.

The event-driven process is also called real time process. A real time process is characterized by one goal for

the initialization, one goal for the event handling, and by the description of the events that trigger the

execution. The execution of the initializing goal begins as soon as the process gets the control. During the

execution of the initializing goal the real time process acts as if it were a normal process. At the (successful)

end of the initializing goal the real time process changes to a cyclic behavior. From this moment, the real time

process is controlled by the incoming events and it executes its event-handling goal as answers to them.

Whenever an event occurs the real time process performs its event-handling goal and consumes that event.

This action is repeated for all incoming events (the repetition is organized by backtracking). A real time

process is intended to answer continuously to events and it is not necessary to assume a theoretical termination

of it. A real time process terminates if the execution of its event-handling goal fails. Such termination is

considered as regular; it does not affect the overall success or failure of the application.

7.2 Phases in process creation

The process creation method in CS-Prolog is somewhere between the dynamic and static creation. To explain

that, the lifetime of the CS-Prolog program is divided virtually into two consecutive phases:

— prelude phase

— working phase

When the CS-Prolog program (and the prelude phase) is started, the main process is started automatically. The

goal of the main process is always main_goal/[0,1]. Only the main process and only in the prelude phase has

Chapter 7: Basic notions

53

the right to create processes using the new/[2,3] and new_rt/[5,6] built-in predicates or to delete previously

created processes using the kill/1 built-in predicate. In the prelude phase the created processes are not alive yet.

This means that all the necessary information is stored, but the execution of the other processes has not yet

begun. The created processes become alive when the CS-Prolog system turns from the prelude phase into the

working phase. Until then the creation and deletion of processes is dynamic.

The end of the prelude phase and the beginning of the working phase is indicated by the invocation of the

start_processes/0 built-in predicate.

When the CS-Prolog system gets into the working phase the previously created processes become alive and

begin working as soon as they get the control. The main process remains alive and will behave like other self-

driven processes. In the working phase there is no more possibility to create or delete processes and that's why

the state of the processes in this phase is static. The only change in the set of processes is the automatic

deletion of the terminated processes.

In those cases when the user does not want apply the parallel feature of CS-Prolog (there are no user defined

processes) the working phase may be empty. However, in order to assist memory handling, it is advisable to

invoke a start_processes/0 call at the beginning of the program’s work, notifying the scheduler that it does not

have to reserve resources for process creation. This makes the prelude phase almost empty and the single

process will run entirely in the working phase. This technique is not obligatory, but resource handling will be

more efficient this way.

7.3 Processors

Since the number of physical processors and the connection among them are machine dependent resources,

they are hidden from the CS-Prolog user. That's why the CS-Prolog language does not refer to the notion of

processors. Instead, it defines the notion of virtual processors. The number of virtual processors is independent

of the number of physical processors present in the system. A CS-Prolog program may refer to unlimited

number of virtual processors. Virtual processors are identified by system-wide unique names and they play role

only in the process distribution algorithm. The process distribution algorithm is an internal algorithm of the

CS-Prolog scheduler, which distributes the created processes among the physical processors. When a new

process is created (using the new/3 or new_rt/6 built-in predicate) the user can determine the virtual processor

which the new process is intended to be delegated to. The only condition that the CS-Prolog scheduler ensures

is that processes having the same virtual processor destination will be surely delegated to the same physical

processor. No other condition is ensured, e.g. it is not sure that processes having different virtual processor

destinations will be delegated to different physical processors. In other words, virtual processors define process

groups the member processes of which shall run on the same physical processor.

If the user does not specify a virtual processor identifier for a process when it is created then the CS-Prolog

scheduler decides on its own where to delegate the process.

7.4 Termination of CS-Prolog programs

A non-parallel CS-Prolog program (having no user-defined processes) terminates successfully or

unsuccessfully if the execution of the main goal (the goal of the main process) was successful or unsuccessful,

respectively.

A parallel CS-Prolog program (having at least one user-defined process) terminates if all of its processes have

terminated. The termination of the whole CS-Prolog program is successful if all of its normal (self-driven)

processes have terminated successfully. If at least one such process failed, the whole program is regarded as

terminated unsuccessfully.

If the CS-Prolog program contains at least one real time process then this fact may reflect the aim of the user to

write a program which is intended to work (theoretically) forever and in this case there is no reason to speak

about the termination of the program. However, in order to avoid the necessity of using the cancellation

methods of the operating system in these cases, the CS-Prolog runtime system will terminate a real time

process when the event handling goal (or the initializing goal) of the process fails. Consequently, the event

handling goals of real time processes should always succeed, except when the user wants the process to

terminate. Note that when a real time process is terminated because its event handling goal failed, this

termination is regarded to be successful.

Parallel programming & real-time features

54

If a run-time error is raised during the execution of any process or some other exception is directed to a

process, and the error or exception is not caught by any protection level of that process, then the execution of

the whole application is terminated and the control returns to the operating system.

A special exception dealing with termination should also be mentioned here: if the scheduler finds all

processes waiting for some event, and decides that none of these events can possibly happen, then a deadlock

exception is signaled to the main process.

The whole application can also be terminated by the halt/[0,1] predicate issued by any of its processes.

7.5 Channels and messages

The CS-Prolog system defines the notion of channels as a tool for the message passing between processes.

There is no other way to pass messages. A channel is a directed pipe between processes (i.e. a single channel

can only serve for one way message passing). It may appear and disappear dynamically during the program's

lifetime. Channels do not belong to any process; instead, they act as system-wide available resources. Each

channel has two ends: one for sending and one for receiving. Processes can own only the ends of channels and

not the channels themselves. However, in the following description we will often say that the process "owns the

channel", meaning only that the process holds the appropriate channel end. A process cannot hold both ends of

a channel at the same time.

Channels are identified by system-wide unique names. The total number of channels in the system and the

number of the channels a process can own are unlimited.

A message can be any Prolog term except a single unbound variable. Compound terms containing unbound

variables are allowed.

7.6 Message passing

The passing of messages through channels is synchronized, i.e., the real message transfer takes place only

when processes at both end of the channel are ready to send or receive the message, respectively. (It is called

rendezvous or handshake method.) The message is effectively passed by copying the message term from the

sender process to the receiver process and no unification on the unbound variables (if any) is executed at all.

All messages have to be accepted. Since the receive/[2,3,4] predicate can have only an unbound variable as its

message argument, the process can not reject a message directly, only after removing it from the channel.

The synchronous message communication system is coupled with interrupt handling. This means that

whenever a process is waiting in a long–term communication predicate (which depends on the behavior of

some other process), it might be interrupted and the operation will behave as a transaction (either completed

totally or no effect at all). The exception from this rule is the broadcast style send operation (with more than

one destination channels). When such a send is interrupted, it is possible that some of the recipients will have

already received the message (and proceed with execution), while others remain waiting as if the sender hadn't

even started the interrupted send operation. On this basis, it is better to consider such broadcasting send not as

an elementary operation but instead as a (hidden) cycle of elementary operations (where the order of individual

transfers is indeterministic).

7.7 Events

The basic notion of the real time programming is the event. Events serve for triggering real time processes

(event driven processes). When a real time process is created then a non-empty set of events is assigned to it.

This real time process will be sensitive to these events. This means that if one of these events occurs then the

real time process launches its event-handling goal and consumes the event. For every real time process, the

incoming events are gathered in a separate first-in-first-out input queue.

The events in CS-Prolog may arise from the following sources:

events generated explicitly by built-in predicates,

events generated explicitly by the external environment of the CS-Prolog system,

events generated implicitly by the internal clock of the CS-Prolog scheduler.

The number of the available events and the number of events that real time processes can be triggered for are

unlimited. Events are identified by system-wide unique names.

Chapter 7: Basic notions

55

Every occurrence of an event may have an optional data argument. The data argument may provide some

additional information about the event. The event data is an arbitrary Prolog term, except the case of a single

unbound variable.

Events generated implicitly by the internal clock of the CS-Prolog scheduler have priority over regular events.

In the extreme, fast occurring timer events can delay indefinitely other event processing for the process

concerned.

Parallel programming & real-time features

56

8. The scheduling mechanism

The CS-Prolog scheduler is part of the CS-Prolog run time system; its main tasks are:

to distribute the created processes among the available physical processors;

to control the quasi-parallel execution of the processes working on the same physical processor;

to handle the system-wide unique names (virtual processors, processes, channels, events);

to maintain other system-wide common resources, namely the set of Prolog flags and the tables of the

current operator and bracket definitions;

to supervise the communication between processes (channel handling, message and event passing);

to monitor the global deadlock situations;

to handle the termination of the program and to return to the operating system.

8.1 The process distribution

During the prelude phase of the program, the CS-Prolog scheduler collects the user-defined processes created

by the new/[2,3] or new_rt/[5,6] built-in predicates. Until the end of the prelude phase, processes can be

removed by the kill/1 built-in predicate. At the end of the prelude phase, the set of processes becomes fixed.

The execution of the start_processes/0 built-in predicate performs the process distribution algorithm. The

CS-Prolog scheduler decides to which physical processor to delegate the individual processes and performs the

delegation. After the distribution, the start_processes/0 built-in predicate terminates successfully and the

scheduler begins the execution of the created processes on each physical processor.

8.2 The parallel execution

Processes on different processors work independently and they have no influence on each other unless some

communication takes place.

Considering one of the physical processors, the scheduler works on it as follows:

If there was no process delegated to it, it remains idle during the whole execution.

If there was only one process delegated to it, the single process owns the entire processor, so it will not

be disturbed by other processes.

If there was more than one process delegated to it, then the scheduler runs them in a quasi parallel

way (time sharing method). This means that the scheduler shares the processor among the involved

processes assuming equal priority for all of them.

Since the processor can execute only one process at a time, from time to time it has to change the currently

executed process. Consequently, there are usually processes that are inactive for a certain time interval. The

scheduler may change the currently executed process in any one of three different cases, whichever comes first.

- if the process has to wait on a communication point

- if the time slice of the process expired

- if deschedule_process/0 predicate is called directly by the active process

The first case means that the execution may be suspended because of the synchronization need of the process in

some communication handling built-in predicate. In this case, the process becomes suspended and it waits until

the appropriate condition fulfills. When next time it gets back the control it continues the execution as if

nothing had happened. If the desired condition is already true at the moment when the process reaches the

communication point then the process change does not take place. In other words, the scheduler does not take

away the processor from the process until it can run continuously.

The second case means that the process may be suspended because it has exhausted its time slice. The time

slice for every process is 2 seconds by default. By this, the scheduler avoids that never or rarely communicating

processes should monopolize the processor. The size of the time slice can be changed by setting a Prolog flag

(see chapter 25).

The third case means that the active process voluntarily yielded the remaining part of its time slice.

Chapter 8: The scheduling mechanism

57

8.3 System-wide common names

The scheduler ensures that the system-wide unique names of virtual processors, processes, channels and events

are common for the whole system and the consistency of these common names is checked.

8.4 Communication

The scheduler supervises the inter-process communication which is covered by the following three areas:

- channel handling

- message passing

- event passing

The scheduler hides the fact that the communication takes place between different physical processors or inside

one processor, so at user level there is no difference.

8.4.1 The channel handling

The scheduler is responsible for the consistent channel handling. Channels do not have to be declared at all,

they are created when first time they are referred by one of the open_channel_for_send/[1,2] or

open_channel_for_receive/[1,2] built-in predicates. A channel becomes ready to pass messages when both

ends of it are opened. Note that channels can connect only different processes, so no process can hold both

ends of a channel.

Channels disappear definitely from the CS-Prolog system when both end of them are released by the

close_channel/1 built-in predicate.

The scheduler keeps track of the actual state of the channels and refuses illegal channel opening and closing

requests. However, in a special case the scheduler accepts the opening request even on a busy channel. This

can be requested by the 'schedule' argument of the open_channel_for_send/[1,2] and

open_channel_for_receive/[1,2] built-in predicates. If this kind of opening is used and if the requested

channel is busy (it is opened by someone else), then the scheduler suspends the execution of the caller process

until the channel will be free for opening (the former owner closes it by the close_channel/1 built-in

predicate). This technique makes possible to wait for the availability of a channel.

8.4.2 The message transfer

The message passing must take place on channels opened successfully on both, the sending and receiving ends.

The message passing is synchronized, which means that both the sender and receiver process must be ready to

perform the operation. If either of them is not yet ready, then the other becomes suspended and waits until its

partner will be ready too (rendezvous method).

8.4.3 The event passing

The event passing is not a mutual operation as the message passing is. The receiver of an event can be only a

real-time process, which is triggered for the event. The sender of an event may be either a process (including

real time processes) using the generate_event/[1,2] built-in predicate, or the environment of the CS-Prolog

system using the function of the similar name of the foreign language interface, or the scheduler itself using its

internal clock.

The scheduler executes a real time process the following way. When the real-time process is delegated to a

processor, it creates its own event queue. This is a first-in-first-out structure. The incoming events are put in

the event queue in the order of their arrival. All events have the same and equal priority. When the real-time

process gets the control, first it starts its initialization goal. During the execution of the initialization goal, the

real-time process acts as if it were a normal process, but it is already able to accept the incoming events. If the

initialization goal has been terminated successfully, then the real time process starts its cyclic behavior. This

means that the real time process waits for an event on its event queue. If there is one, the process executes its

event-handling goal once. As far as there are events in the queue, the real time process repeats its event-

handling goal for each of them. If the queue is empty, the real time process waits until the arrival of the next

event.

Parallel programming & real-time features

58

Obviously, the event-handling goal should be written in such a way that it can act properly for all incoming

events. The get_event/[1,2] built-in predicate serves for accessing the name and data of the event, which

caused the actual execution of the event-handling goal. The get_event/[1,2] built-in predicate does not remove

the event from the event queue, so it can be called several times. The event will be removed by the scheduler

when the actual execution of the event-handling goal is terminated.

The scheduler maintains this cyclic behavior forever, unless the event-handling goal of the real time process

fails. If the goal fails, the real time process disappears from the CS-Prolog system, as a normal process would

do after the termination of its goal.

Events can be sent from inside a process using the generate_event/[1,2] built-in predicate. The event passing

is asynchronous, which means that the sender process of the event will never be suspended, the event

generating operation always can be performed without any condition.

Generating a specific event kind is not confined to a single process - any number of processes can generate the

same kind. The recipient of each event kind, however, must be uniquely defined by the new_rt/[3,5] predicates

creating the particular real-time processes.

A rudimentary flow control scheme is introduced at system level to prevent a runaway event generator from

exhausting memory resources by flooding the system with unconsummated events. For details see:

generate_event/[1,2], set_event_qsize_limit/[1,2], cause_interrupt/2, and the Prolog flag discard_mttp.

Two system_error exceptions are defined to cope with asynchronous communication overruns. The error

information terms are the following:

[Goal, 0, event_queue_overrun, EventName]

[Goal, 0, interrupt_queue_overrun, ProcessName]

They are routed to the main process, if it is already in terminated state, the system stops.

8.5 The deadlock detection

The scheduler keeps track of the current state of all processes in the program. Among other aims, this enables

it to discover global deadlock situations. Global deadlock happens when every process in the CS-Prolog system

is suspended for some reason (they are waiting on communication points) so that none of them can be selected

for continuing execution. Since this kind of situation could never be resolved, the scheduler signals a run-time

error. Of course, the error handling techniques of the CS-Prolog make possible that the user could recover this

situation at user level.

The system_error exception with the following error information term

[Goal, 0, deadlock]

is routed to the main process. If the main process is already in terminated state, then the system gets stopped

with a corresponding error message.

Note that if there are real-time processes in the system which react to timer events (i.e. 'period(T)' or 'idle(T)'

had been specified for them as the 5th argument of the corresponding new_rt/[5,6], or any external agent is

expected to generate events/interrupts (except CTRL-C from the user), then the momentary lack of activity is

not considered a deadlock situation.

8.6 Process deletion and program termination

The scheduler removes the terminated processes from the CS-Prolog system. When a process is removed then

the scheduler automatically closes all non-closed channels. When the last process has been terminated the

scheduler terminates the CS-Prolog system and returns to the host operating system.

Chapter 9: Other real-time features

59

9. Other real-time features

9.1 Time-outs

The CS-Prolog system provides an alarm clock feature. Every process may possess one alarm clock. It can set

the alarm clock for a time interval. When the time interval passed the scheduler signals a time-out interrupt at

the caller process and then interrupt can be handled by the general interrupt handling techniques. The process

can also reset the alarm clock before the exhaustion of the time interval set. This feature is implemented by the

set_timeout/1 and reset_timeout/0 built-in predicates. The alarm clock is ticking only when the process is

executed, so it does not show the real time, rather the time that passed for the process.

9.2 Direct interrupts

The CS-Prolog scheduler provides a possibility to raise an interrupt explicitly for a process (even for itself).

The target process will get the interrupt immediately, even if it is suspended for some reason. The interrupt

breaks the execution of the suspended call. Then the interrupt can be handled by the general interrupt handling

techniques. This feature is implemented by the cause_interrupt/2 built-in predicate.

Real time tasks cannot be interrupted (at least in any sensible way), because part of the time is spent in the

outer loop, where no handler can be installed. Anyway, they can be alerted by events.

PART III

Built-in predicates

Chapter 10: Introduction

63

10. Introduction

This part contains the full description of the built-in predicate set of CS-Prolog. Built-in predicates are those

procedures that are automatically present in any CS-Prolog module.

The argument(s) of a built-in predicate in general cannot be arbitrary Prolog terms; each predicate specifies the

valid type and eventually the valid domain of its argument(s). If the argument(s) do not fulfill the

requirements, an exception is signaled.

In the description, we used the classification, structure and the wording of the Prolog standard draft.

Built-in predicates

64

11. Format of description

Each definition of a built-in predicate consists of four parts: Description, Template and modes, Examples, and

Errors.

Description

This part explains the behavior of the predicate. Lists the conditions for which the predicate succeeds, and

describes any side effects that occur when it is executed.

Template and modes

This part provides a scheme, which specifies the type and instantiation requirements for each argument of the

built-in predicate.

The type of each argument is defined by an identifier, which denotes this argument. The meaning of this

identifier is self—evident. The mode of each argument defines whether or not an argument has to be

instantiated when the built-in predicate is executed. The mode is one of the following atoms:

+

the argument has to be instantiated (input)

?

the argument can be instantiated or can be a variable (any)

@

the argument will not get instantiated by direct unification within the predicate

-

the argument has to be a variable that will be instantiated if the predicate succeeds (output).

When appropriate, a Template and modes part includes a note that the predicate is a predefined

operator.

Examples for a template:

arg(+integer, +compound_term, ?term)

The first argument has to be an integer number, the second argument has to be a compound

term, and the third argument can be any term (including variable).

open(@source_sink, @io_mode, -stream)

The first argument has to be a name of a source or a sink, the second has to be an atom denoting

an I/O mode, and the third argument has to be an unbound variable. The third argument will be

unified with a stream identifier, if the predicate succeeds. The first two arguments will not be

changed

Examples

An example is normally the built-in predicate used as a goal, together with a statement saying whether the goal

succeeds, fails or produces an error. The statement also describes any side effect and substitution that occurs.

Errors

A list of the circumstances that will cause an error when the built-in predicate is executed, together with the

sort of error that is caused.

The explanation of the error will always refer to the call of the predicate as it is shown in the Description part.

If the Argno or Other element of the error info term contain relevant information, they are mentioned as

ErrInfo-Argno and ErrInfo-Other.

ISO Compliance

CS-Prolog implements all built-in predicates listed in International Standard ISO/IEC 13211-1 (Prolog - Part

1: General core). CS-Prolog does not offer a strictly conforming mode, which would reject uses of built-in

predicates that are specific to CS-Prolog. To help programmers who want to write standard compliant Prolog

programs the standard predicates are annotated with [ISO] in the Template and modes part.

Chapter 12: Term unification

65

12. Term unification

These predicates deal with the unification of two terms.

(=) /2 - Prolog unify

Description

X = Y

The predicate unifies X and Y and succeeds if they are unifiable, otherwise it fails. If during the unification a

variable is bound to a compound term that contains the same variable, the unification succeeds, creating a

cyclic term. (There is no occurs check during the unification.) Such a cyclic term can cause an error or an

endless loop when unifying it with another term or when writing out. See also unify_with_occurs_check/2

predicate.

Template and modes

?term = ?term [ISO]

= is a predefined infix operator.

Examples

1 = 1.

Succeeds.

f(X, aa) = f(aa, Y)

Succeeds, unifying the two variables X and Y with aa.

1 = 2.

Fails.

X = a(X).

Succeeds, creating a dangerous cyclic term.

Errors

None

unify_with_occurs_check/2 - safe unify

Description

unify_with_occurs_check(X, Y)

Performs unify with occurs check. That means that if X and Y are not unifiable or X and Y are unifiable and

no cyclic term is created during unification, then this predicate has the same effect as the previous one, =/2. If

during the unification of X and Y a cyclic term would be created, the predicate fails.

Template and modes

unify_with_occurs_check(?term, ?term) [ISO]

Examples

unify_with_occurs_check(1, 1).

Succeeds.

unify_with_occurs_check(f(X, aa), f(aa, Y)).

Succeeds, unifying the two variables X and Y with aa.

unify_with_occurs_check(1, 2).

Fails.

Built-in predicates

66

unify_with_occurs_check(X, a(X)).

Fails.

Errors

None

(\=) /2 - not Prolog unifiable

Description

X \= Y

Succeeds if and only if X and Y are not unifiable.

Template and modes

@term \= @term [ISO]

\= is a predefined infix operator

Examples

1 \= 1.

Fails.

f(X, aa) \= f(aa, Y)

Fails.

1 \= 2.

Succeeds

X \= a(X).

Fails.

Errors

None

Chapter 13: Type testing

67

13. Type testing

These predicates test the type associated with a term. Each of these predicates simply succeeds or fails; there is

no side effect, substitution, or error.

According to the Prolog Standard, every term has one of the following mutually-exclusive types: variable,

integer, floating point value, atom, compound term.

The CLP extension to CS-Prolog adds a sixth type to this categorization: constrained variable. Terms of this

type appear only dynamically, when the program actively uses CLP; there is no syntactic construct to represent

a constarined variable in the source program. Constrained variables can be be bound transparently to (some)

numbers.

NOTE: Prolog is not a typed language, and an argument of a compound term or a predicate can be

any term whatsoever. Although the control constructs, built-in predicates and evaluable functors are

defined for all arguments and operands, it is often an error if an argument does not have a particular sort

of value.

It is therefore convenient to classify the terms as belonging to one of several disjoint types.

var/1

Description

var(X)

Is true if and only if X is a variable.

Template and modes

var(@term) [ISO]

Examples

var(foo).

Fails.

var(Foo).

Succeeds.

foo=Foo, var(Foo).

Fails.

var(_).

Succeeds.

Errors

None

atom/1

Description

atom(X)

Is true if and only if X is an atom.

Template and modes

atom(@term) [ISO]

Built-in predicates

68

Examples

atom(foo).

Succeeds.

atom(Foo).

Fails.

atom('Foo').

Succeeds.

atom(foo(Foo)).

Fails.

atom([]).

Succeeds.

atom(6).

Fails.

atom(3.3).

Fails.

Errors

None

integer/1

Description

integer(X)

Is true if and only if X is an integer.

Template and modes

integer(@term) [ISO]

Examples

integer(6).

Succeeds.

integer(foo).

Fails.

integer(Foo).

Fails.

integer(foo(Foo)).

Fails.

integer(3.3).

Fails.

Errors

None

float/1

real/1

Description

real(X)

Is equivalent with

Chapter 13: Type testing

69

float(X)

float(X)

Is true if and only if X is a floating-point number.

Template and modes

float(@term) [ISO]

real(@term)

Examples

real(3.3).

Succeeds.

real(6).

Fails.

real(foo).

Fails.

real(Foo).

Fails.

real(foo(Foo)).

Fails.

Errors

None

atomic/1

Description

atomic(X)

Is true if and only if X is an atom, an integer, or a floating-point number.

Template and modes

atomic(@term) [ISO]

Examples

atomic(foo).

Succeeds.

atomic(Foo).

Fails.

atomic(foo(Foo)).

Fails.

atomic([]).

Succeeds.

atomic(6).

Succeeds.

atomic(3.3).

Succeeds.

Errors

None

Built-in predicates

70

compound/1

Description

compound(X)

Is true if and only if X is a compound term.

Template and modes

compound(@term) [ISO]

Examples

compound(foo).

Fails.

compound(Foo).

Fails.

compound(foo(Foo)).

Succeeds.

compound([]).

Fails.

compound([6]).

Succeeds.

compound("1234").

Succeeds.

compound(3.3).

Fails.

Errors

None

nonvar/1

Description

nonvar(X)

Is true if and only if X is not a variable (see also strict_nonvar/1).

Template and modes

nonvar(@term) [ISO]

Examples

nonvar(foo).

Succeeds.

nonvar(Foo).

Fails if Foo is currently unbound, otherwise succeeds.

foo=Foo, nonvar(Foo).

Succeeds.

nonvar(_).

Fails.

Errors

None

Chapter 13: Type testing

71

number/1

Description

number(X)

Is true if and only if X is an integer or a floating-point number.

Template and modes

number(@term) [ISO]

Examples

number(6).

Succeeds.

number(foo).

Fails.

number(_).

Fails.

number(foo(Foo)).

Fails.

number(3.3).

Succeeds.

Errors

None

ground/1

Description

ground(X)

Is true if and only if X is completely instantiated, i.e., free of unbound variables (see also strict_ground/1).

Template and modes

ground(@term)

Examples

ground(foo).

Succeeds.

ground(Foo).

Fails if Foo is currently unbound or is bound to a term containing any unbound variable as subterm, otherwise

succeeds.

ground(foo(_)).

Fails.

ground([1, 2.0, foo(bar)]).

Succeeds.

ground([a | _]).

Fails.

Errors

None

Built-in predicates

72

constrained_var/1

Description

constrained_var(X)

Is true if and only if X is bound to a constrained variable (an object representing a numeric value with

constraints imposed on it, managed by a CLP solver). This is possible only if the CS-Prolog runtime program

is configured with at least one solver, and the Prolog program being executed actively uses the CLP feature.

Note that a constrained variable itself can later be bound to a number, which renders it ‘transparent’.

Note also that there is no syntactic construct to represent a constrained variable in the source program.

Template and modes

constrained_var(@term) [ISO]

Examples

constrained_var(foo).

Fails.

constrained_var(Foo).

Succeeds if Foo is currently bound to a constrained variable, otherwise fails. (Primary reference to a

constrained variable is obtained when an unbound variable is passed to a CLP solver within a constraint in a

successful call of e.g. clp_constraint/1.)

clp_constraint([Foo =< 10]), constrained_var(Foo).

Succeeds if the first call succeeds.

constrained_var(_).

Fails.

Errors

None

strict_nonvar/1

Description

strict_nonvar(X)

Is true if and only if X is neither an unbound variable, nor a constrained variable. If there is no active CLP

solver in the CS-Prolog process where the call is issued then this call is equivalent with nonvar(X).

Template and modes

strict_nonvar(@term) [ISO]

Examples

strict_nonvar(foo).

Succeeds.

strict_nonvar(Foo).

Fails if Foo currently either is unbound or is bound to a constrained variable, otherwise succeeds.

strict_nonvar(_).

Fails.

Errors

None

Chapter 13: Type testing

73

strict_ground/1

Description

strict_ground(X)

Is true if and only if X is completely and strictly instantiated, i.e., free of unbound variables and constrained

variables. If there is no active CLP solver in the CS-Prolog process where the call is issued then this call is

equivalent with ground(X).

Template and modes

strict_ground(@term)

Errors

None

Built-in predicates

74

14. Term comparison

These predicates test the ordering of two terms. Each of these predicates simply succeeds or fails; there is no

side effect, substitution, or error.

14.1 Term order

There is an ordering term_precedes defined for any two terms.

If X and Y are identical terms then X term_precedes Y and Y term_precedes X are both false.

If X and Y have different types, X term_precedes Y if and only if the type of X precedes the type of Y in the

following order:

- variable

- constrained variable (only with CLP extension)

- floating-point number

- integer

- atom (symbol)

- compound

If X and Y are variables which are not identical then the term order of these terms is defined by their internal

representation.

If X and Y are floating point numbers then X term_precedes Y if and only if X < Y.

If X and Y are integers then X term_precedes Y if and only if X < Y.

If X and Y are atoms then X term_precedes Y if and only if X is less then Y in lexicographic ordering.

If X and Y are compound terms then X term_precedes Y if and only if:

- The arity of X is less than the arity of Y or

- X and Y have the same arity, and the functor name of X is FX, and the functor name of Y is FY,

and FX term_precedes FY or

- X and Y have the same functor name and arity, and there is a positive integer N such that, for all I

less than N the Ith argument of X is identical with the Ith argument of Y, and the Nth argument of X

term_precedes the Nth argument of Y.

(==) /2 - identical,

(\==) /2 - not identical

Description

X == Y

Is true if and only if X and Y are identical terms.

X \== Y

Is true if and only if X and Y are not identical terms.

Template and modes

@term == @term [ISO]

@term \== @term [ISO]

== and \== are predefined infix operators.

Examples

1 == 1.

Succeeds.

Chapter 14: Term comparison

75

X == X.

Succeeds.

1 == 2.

Fails.

X == 1.

Fails.

X == Y.

Fails.

1 \== 2.

Succeeds.

X \== 1.

Succeeds.

Errors

None

(@<) /2 - term less than,

(@=<) /2 - term less than or equal

Description

X @< Y

Is true if and only if X term_precedes Y.

X @=< Y

Is true if and only if X term_precedes Y or X and Y are identical terms.

Template and modes

@term @< @term [ISO]

@term @=< @term [ISO]

@< and @=< are predefined infix operators.

Examples

1.0 @< 1.

Succeeds.

cat @< dog.

Succeeds.

short @< short.

Fails.

short @< shorter.

Succeeds.

zoo @< apple(pie).

Succeeds.

foo(b) @< foo(a).

Fails.

foo(a,b) @< yupp(a).

Fails.

X @< X.

Fails.

1.0 @=< 1.

Succeeds.

short @=< short.

Succeeds.

Built-in predicates

76

Errors

None

(@>) /2 - term greater than,

(@>=) /2 - term greater than or equal

Description

X @> Y

Is true if and only if Y term_precedes X.

X @>= Y

Is true if and only if Y term_precedes X or X and Y are identical terms.

Template and modes

@term @> @term [ISO]

@term @>= @term [ISO]

@> and @>= are predefined infix operators.

Examples

1.0 @> 1.

Fails.

cat @> dog.

Fails.

short @> short.

Fails.

short @> shorter.

Fails.

zoo @> apple(pie).

Fails.

foo(b) @> foo(a).

Succeeds.

foo(a,b) @> yupp(a).

Succeeds.

X @> X.

Fails.

1.0 @>= 1.

Fails.

short @>= short.

Succeeds.

Errors

None

Chapter 15: Term creation and decomposition

77

15. Term creation and decomposition

These predicates enable a term to be assembled from its component parts, or split into its component parts, or

copied.

functor/3

Description

functor(Term, Name, Arity)

If Term is a constant then Name is unified with Term, and Arity is unified with 0.

If Term is a compound term then Name is unified with the name of Term, and Arity is unified with the arity

of the Term.

If Term is a variable, Name is a constant, and Arity is 0 then Term is unified with Name.

If Term is a variable, Name is an atom, and Arity is an integer greater than zero then Term is unified with a

term that has name Name and arity Arity, and Arity distinct uninstantiated arguments.

Template and modes

functor(@nonvar, ?constant, ?integer) [ISO]

functor(-var, +constant, +integer) [ISO]

Examples

functor(foo(a, b, c), foo, 3).

Succeeds.

functor(foo(a, b, c), X, Y).

Succeeds, unifying X with foo and Y with 3.

functor(X, foo, 3).

Succeeds, unifying X with foo(_, _, _).

functor(X, foo, 0).

Succeeds, unifying X with foo.

functor(foo(a), foo, 2).

Fails.

functor(1, X, Y).

Succeeds, unifying X with 1 and Y with 0.

functor(X, 1.1, 0).

Succeeds, unifying X with 1.1.

functor([_|_], '.', 2).

Succeeds.

functor([], [], 0).

succeeds.

Errors

instantiation_error

Term is uninstantiated and at least one of Name and Arity is uninstantiated.

type_error(atomic, Name)

Name is not a variable and not atomic

type_error(atom, Name)

Arity is a positive integer and Name is atomic but not an atom

type_error(integer, Arity)

Arity is not a variable and not an integer

domain_error(not_less_than_zero, Arity)

Arity is an integer that is less than zero

Built-in predicates

78

representation_error(max_arity)

Term is uninstantiated and Arity is greater than 255.

arg/3

Description

arg(N, Term, Arg)

Unifies Arg with the Nth argument of the compound term Term. Arguments are numbered from 1.

Template and modes

arg(+integer, +compound_term, ?term) [ISO]

Examples

arg(1, foo(a, b), a).

Succeeds.

arg(1, foo(a, b), X).

Succeeds, unifying X with a.

arg(1, foo(X, b), a).

Succeeds, unifying X with a.

arg(0, foo(X, b), foo).

Fails.

arg(1, foo(X, b), Y).

Succeeds, unifying X with Y.

arg(1, foo(a, b), b).

Fails.

Errors

instantiation_error

N is uninstantiated.

instantiation_error

Term is uninstantiated.

type_error(integer, N)

N is not a variable and not an integer.

type_error(compound, Term)

Term is not a variable and not a compound term.

domain_error(not_less_than_zero, N)

N is an integer that is less than zero.

(=..) /2 - univ

Description

Term =.. List

If Term is a constant then List is unified with the list whose only element is Term.

If Term is a compound term then List is unified with the list whose head is the name of Term and whose tail

is the list of its arguments.

If Term is a variable and List is a list whose only element is a constant then Term is unified with the single

element of List.

If Term is a variable and List is a list and there exists a compound term CT such that the name of CT is the

head of List and the list of the arguments of CT is the tail of List then CT is created and Term is unified with

it.

Chapter 15: Term creation and decomposition

79

Template and modes

+nonvar =.. ?list [ISO]

-var =.. +list [ISO]

=.. is a predefined infix operator

Examples

foo(a, b)=.. [foo, a, b].

Succeeds.

X =.. [foo, a, b].

Succeeds, unifying X with foo(a, b).

foo(a, b) =.. L.

Succeeds, unifying L with [foo, a, b].

foo(X, b) =.. [foo, a, Y].

Succeeds, unifying X with a and Y with b.

1 =.. [1].

Succeeds.

Errors

instantiation_error

Term is uninstantiated and List is a partial list.

instantiation_error

Term is uninstantiated and List is a list whose head is uninstantiated.

type_error(list, List)

List is neither a partial list nor a list.

type_error(atomic, Head)

List is of the form [Head] and Head is a compound term.

type_error(atom, Head)

List is of the form [Head | Tail], Head is neither an atom nor a variable and Tail is not the empty list.

domain_error(non_empty_list, List)

Term is a variable and List is the empty list.

representation_error(Term =.. List, 2, max_arity, [])

The length of List exceeds the maximum value allowed for an arity.

copy_term/2

Description

copy_term(Term_1, Term_2)

Copies Term_1 to a term T while replacing each variable of Term_1 by a new variable. If Term_2 can be

unified with T, the predicate succeeds. Otherwise, the predicate fails.

Template and modes

copy_term(@term, ?term) [ISO]

Examples

copy_term(X, Y).

Succeeds. X and Y remain distinct variables.

copy_term(X, 3).

Succeeds. X remains a variable.

copy_term(_, a).

Succeeds.

copy_term(a+X, X+b).

Succeeds, unifying X with a. This example contradicts to the mode of the first argument (@ that is not

modified). It is not caused by the copy_term/2, but it is because the two arguments contain the same variable.

Built-in predicates

80

copy_term(X+X+Y, A+B+B).

Succeeds, unifying A with B. X and Y remain distinct variables.

copy_term(a, b).

Fails.

copy_term(a+X, X+b), copy_term(a+X, X+b).

Fails.

Errors

representation_error(max_term)

The term to be copied (first argument) is larger then the limit set for built-in predicates (the size of terms created in one

step is restricted)

numbervars/3

Description

numbervars(Term,N,M)

Unifies each of the variables in term Term with a special term '$VAR(I)' where I ranges from N to NN. These

terms are printed out by a

write(Term,[numbervars(true)])

call as a capital letter followed by an integer (see section 3.11 for detailed description). M is unified with the

value of the expression NN + 1.

Template and modes

numbervars(?term, +integer, ?integer)

Examples

numbervars(a(X,Y),3,M)

X is unified with '$VAR(3)', Y is unified with '$VAR(4)', M is unified with 5. If this term is written out

with numbervars(true) option, the output is

a(D,E)

Errors

instantiation_error

N is uninstantiated.

type_error(integer, N)

N is not an integer.

domain_error(not_less_than_zero, N)

N is negative.

Chapter 16: Arithmetic evaluation

81

16. Arithmetic evaluation

These predicates evaluate an arithmetic expression and unify the result with a term, or compare results of

evaluation of two arithmetic expressions.

Integer arithmetic is performed internally with a greater precision than allowed by the CSP-II integer range,

and only the final result is checked. Therefore, it may occur that a complex expression is evaluated

successfully, while some subexpression from it causes integer overflow if evaluated separately.

Floating-point operations are influenced by the current value of the float_range_checking_function

prolog flag. The setting influences the action taken when an operation yields a denormalized value. If the

current setting is denormalize, then the result is accepted. When the setting is

underflow_to_zero_after_rounding then the result is forced to 0.0. With the last possibility,

underflow_exception_after_rounding, an exception is raised.

16.1 Arithmetic expressions

A Prolog term is an arithmetic expression if it is composed from numbers and evaluable functors. Each

evaluable functor corresponds to an arithmetic operation on the argument(s) of the functor.

The following unary operations are available:

-

Arithmetic negation, for integer argument gives integer result, for float argument gives float

result.

\

Bitwise complement, defined only for integer argument, gives integer result.

abs

Absolute value, for integer argument gives integer result, for float argument gives float result.

sign

Sign of the argument (-1, 0, or 1). For integer argument gives integer result, for float argument

gives float result.

float

Returns its argument as a float value. Accepts integer argument only and gives float result. (This

is not to be confused with the float/1 test predicate, the ISO equivalent of real/1.)

sqrt

Square root of the argument. For any number as argument gives a float result.

float_significand

Float significand (mantissa) of the argument. For any number as argument gives a float result

(this result is between -1.0 and 1.0, noninclusive).

float_exponent

Float exponent of the argument. Defined for any type of number, gives integer result.

exp

Exponential function of the argument (exp(x)=ex). For any number gives float result.

log

Natural logarithm of the argument. For any number gives float result.

log10

Base-10 logarithm of the argument. For any number gives float result.

sin

Sine of the argument. For any number gives float result.

cos

Cosine of the argument. For any number gives float result.

tan

Tangent of the argument. For any number gives float result.

asin

Arc sine of the argument. For any number gives float result.

Built-in predicates

82

acos

Arc cosine of the argument. For any number gives float result.

atan

Arc tangent of the argument. For any number gives float result.

float_successor

Float successor of the argument. For any number gives float result. It is the next representable

float number that is larger than the argument.

float_predecessor

Float predecessor of the argument. For any number gives float result. It is the previous

representable float number that is smaller than the argument.

float_unit_in_last_place

Float unit in last place of the argument. For any number gives float result.

float_integer_part

Float integer part of the argument. For any number gives float result.

float_fractional_part

Float fractional part of the argument. For any number gives float result.

floor

The largest integer not greater then the argument. For any number, the result is an integer.

ceiling

The smallest integer not less then the argument. For any number, the result is an integer.

truncate

An integer created by truncating the fractional part of the argument. For any number, the result

is an integer. (This function is equivalent with floor for positive numbers and it is equivalent

with ceiling for negative numbers.)

round

The integer nearest to the argument. For any number, the result is an integer. (This operation is

defined as follows:

round(X) = floor(X + 0.5)

The following binary operations are available:

+

Addition of arguments. Defined for all arithmetic types. If both arguments are integers the result

is an integer, otherwise the result is a float number.

-

Subtraction of arguments. Defined for all arithmetic types. If both arguments are integers the

result is an integer, otherwise the result is a float number.

*

Multiplication of arguments. Defined for all arithmetic types. If both arguments are integers the

result is an integer, otherwise the result is a float number.

/

Division of first argument by the second. Defined for all arithmetic types. Always gives float

result, even if the division of two integer arguments would be an integer number.

mod

Gives the remainder when dividing the first argument by the second. Its sign is identical with the

sign of the divisor. Defined for integer arguments. Gives integer result.

rem

Gives the remainder when dividing the first argument by the second. Its sign is identical with the

sign of the dividend. Defined for integer arguments. Gives integer result.

**

Raising to power operation. Defined for both integer and float arguments. The result is always a

float number. Zero raised to power zero gives 1.0.

//

Integer division of arguments. Defined for integer arguments. Gives integer result. Rounding is

towards zero.

Chapter 16: Arithmetic evaluation

83

>>

Bitwise logical right shift of arguments. Defined for integer arguments. Gives integer result. The

shift works on 2's complement representation of CS-Prolog integers as unsigned values. The

result is a signed value, the sign depending on the MSB. Negative second argument reverses the

direction of the shift operation.

<<

Bitwise logical left shift of arguments. Defined for integer arguments. Gives integer result. The

shift works on 2's complement representation of CS-Prolog integers as unsigned values. The

result is a signed value, the sign depending on the MSB. Negative second argument reverses the

direction of the shift operation.

/\

Bitwise and of arguments. Defined for integer arguments. Gives signed integer result.

\/

Bitwise or of arguments. Defined for integer arguments. Gives signed integer result.

hypot

Euclidean distance function of arguments. Defined for all arithmetic types, gives always float

result. The definition of this function is:

hypot(X,Y) = sqrt(X*X + Y*Y)

min

Minimum value of arguments. Defined for all arithmetic types. If both arguments are integers

the result is an integer, otherwise the result is a float number.

max

Maximum value of arguments. Defined for all arithmetic types. If both arguments are integers

the result is an integer, otherwise the result is a float number.

float_scale

Float scale of arguments. Defined for any arithmetic type as first argument and integers as

second argument. Gives float result. The definition of this operation is:

float_scale(x,y) = x * 2**y.

float_truncate

Float truncate of arguments. Defined for any number as first argument and integers as second

argument. Gives float result. It works on the conceptual representation of float_exponent and

float_significand and truncates the significand at the digit indicated by the second argument.

float_round

Float round of arguments. Defined for any number as first argument and integers as second

argument. Gives float result. It works on the conceptual representation of float_exponent and

float_significand, and rounds the significand at the digit indicated by the second argument.

(is)/2 - evaluate expression

Description

Result is Expression

Evaluates the arithmetic expression Expression and unifies Result with the resulting value.

Template and modes

?term is +arithmetic_expr [ISO]

is is a predefined infix operator.

Examples

X is 7 * (30 + 5).

Succeeds, unifying X with 245.

X is 35 / 7.

Succeeds, unifying X is with 5.0.

Built-in predicates

84

X is 35 // 7.

Succeeds, unifying X is with 5.

X is floor(7.6).

Succeeds, unifying X is with 7.

X is round(7.6).

Succeeds, unifying X is with 8.

X is float(7).

Succeeds, unifying X is with 7.0.

X is 2 ** 4 >> 2.

Succeeds, unifying X is with 4.

X is 2 ** 4 << 2.

Succeeds, unifying X is with 64.

X is 10 /\ 12

Succeeds, unifying X is with 8.

X is 10 \/ 12

Succeeds, unifying X is with 14

Errors

instantiation_error

Expression is insufficiently instantiated.

type_error(integer, Culprit)

Evaluable functor in Expression requires integer value. Culprit is not an integer.

type_error(evaluable, CulpritFunctor)

There is a subexpression of Expression that is an atom or a compound term, and its functor CulpritFunctor is not an

evaluable functor.

evaluation_error(Flag)

An error indicated by Flag occurred while evaluating Expression. Flag is one of the following flags: underflow,

int_overflow, float_overflow, undefined and zero_divisor.

(=:=) /2 - arithmetic equal

(=\=) /2 - arithmetic not equal

Description

E1 =:= E2

Evaluates the expressions E1 and E2, and succeeds if the results are equal numbers, otherwise fails.

E1 =\= E2

Evaluates the expressions E1 and E2, and fails if the results are equal numbers, otherwise succeeds.

Template and modes

+arithmetic_expr =:= +arithmetic_expr [ISO]

+arithmetic_expr =\= +arithmetic_expr [ISO]

=:= and =\= are predefined infix operators.

Examples

5 + 6 =:= 22 // 2.

Succeeds

round(5.6) =:= 5.

Fails

5 + 6 =\= 22 // 2.

Fails

Chapter 16: Arithmetic evaluation

85

round(5.6) =\= 5.

Succeeds

Errors

instantiation_error

E1 or E2 is insufficiently instantiated.

type_error(integer, Culprit)

Evaluable functor in E1 or E2 requires integer value. Culprit is not an integer.

type_error(evaluable, CulpritFunctor)

There is a subexpression of E1 or E2 that is an atom or a compound term, and its functor CulpritFunctor is not an

evaluable functor.

evaluation_error(Flag)

An error indicated by Flag occurred while evaluating E1 or E2. Flag is one of the following flags: underflow,

int_overflow, float_overflow, undefined and zero_divisor.

(<) /2 - arithmetic less

(=<) /2 - arithmetic less or equal

Description

E1 < E2

Evaluates the expressions E1 and E2 and succeeds if the result of evaluation of E1 is less than the result of

evaluation of E2, otherwise fails.

E1 =< E2

Evaluates the expressions E1 and E2 and succeeds if the result of evaluation of E1 is less than or equal to the

result of evaluation of E2, otherwise fails.

Template and modes

+arithmetic_expr < +arithmetic_expr [ISO]

+arithmetic_expr =< +arithmetic_expr [ISO]

< and =< are predefined infix operators.

Examples

5 + 6 =< 22 // 2.

Succeeds

5 < round(5.6).

Succeeds

Errors

instantiation_error

E1 or E2 is insufficiently instantiated.

type_error(integer, Culprit)

Evaluable functor in E1 or E2 requires integer value. Culprit is not an integer.

type_error(evaluable, CulpritFunctor)

There is a subexpression of E1 or E2 that is an atom or a compound term, and its functor CulpritFunctor is not an

evaluable functor.

evaluation_error(Flag)

An error indicated by Flag occurred while evaluating E1 or E2. Flag is one of the following flags: underflow,

int_overflow, float_overflow, undefined and zero_divisor.

Built-in predicates

86

(>) /2 - arithmetic greater

(>=) /2 - arithmetic greater or equal

Description

E1 > E2

Evaluates the expressions E1 and E2 and succeeds if the result of evaluation of E1 is greater than the result of

evaluation of E2, otherwise fails.

E1 >= E2

Evaluates the expressions E1 and E2 and succeeds if the result of evaluation of E1 is greater than or equal to

the result of evaluation of E2, otherwise fails.

Template and modes

+arithmetic_expr > +arithmetic_expr [ISO]

+arithmetic_expr >= +arithmetic_expr [ISO]

> and >= are predefined infix operators.

Examples

5 + 6 >= 22 // 2.

Succeeds

5 > round(5.6).

Fails

Errors

instantiation_error

E1 or E2 is insufficiently instantiated.

type_error(integer, Culprit)

Evaluable functor in E1 or E2 requires integer value. Culprit is not an integer.

type_error(evaluable, CulpritFunctor)

There is a subexpression of E1 or E2 that is an atom or a compound term, and its functor CulpritFunctor is not an

evaluable functor.

evaluation_error(Flag)

An error indicated by Flag occurred while evaluating E1 or E2. Flag is one of the following flags: underflow,

int_overflow, float_overflow, undefined and zero_divisor.

random/1

Description

random(X)

Unifies X with the next element of a series of pseudo random integers in the range from 0 to the largest

CS-Prolog integer. (The largest integer is the value associated with the Prolog flag max_integer and can be

obtained using the get_prolog_flag/2 predicate.)

The set_random_seed/1 predicate can be used to set a new starting point for the pseudo random series.

The random seed (the starting point of the generator) is local to the process. Initially all processes start with

the same number.

Template and modes

random(-integer)

Chapter 16: Arithmetic evaluation

87

Errors

type_error(variable, X)

X is not an unbound variable.

set_random_seed/1

Description

set_random_seed(Seed)

Sets the new starting point for generating a series of pseudorandom integers. The new starting point depends

on the Seed argument. If it is negative, a randomly chosen integer will be set (the current time is used to get a

genuine random value). If Seed is 0, the generator is reset to its initial value. Positive arguments will become

themselves the new base value for the generator.

The random/1 predicate can be used to retrieve the pseudorandom numbers generated.

The random seed is local to the process. The initial value is the same for all processes.

Template and modes

set_random_seed(+integer)

Examples

set_random_seed(-1).

Sets randomly the base value of the generator.

set_random_seed(1994).

Sets the base value of the generator to 1994.

Errors

instantiation_error

Seed is a variable.

type_error(integer, Seed)

Seed is not a variable and not an integer.

Built-in predicates

88

17. Clause retrieval and information

These predicates enable the contents of the Prolog database to be inspected during execution.

clause/2

Description

clause(Head, Body)

This predicate succeeds if the functor of Head corresponds to a dynamic predicate, and there is a clause in the

database with term form H :- B and H can be unified with Head and B can be unified with Body. Facts are

considered as rules having true as their body. The clause is searched only in one module, if Head contains a

module name prefix then in that module, if it doesn't, in the current module.

This predicate is resatisfiable. On backtracking, it gives all possible clauses. If the predicate is modified after a

clause/2 call, the modifications are not effective from the point of view of the clause/2 call. The predicate

behaves as if it was frozen in the moment of the call.

If the functor of Head corresponds to a static or built-in procedure, clause/2 raises an exception. If the functor

does not correspond to any procedure, the call simply fails.

Template and modes

clause(+head, ?body) [ISO]

Examples

clause(foo, true).

Succeeds if there is a dynamic fact foo or a rule foo :- true.

clause(mod:x(_), Body).

Succeeds if there is a dynamic clause for x/1 in module mod and unifies the body with Body, or if there is a

dynamic fact for x/1 in module mod and unifies true with Body.

Errors

instantiation_error

Head or the module prefix extracted from Head is uninstantiated.

type_error(callable, Head)

Head is neither a variable nor a callable term.

type_error(callable, Body)

Body is neither a variable nor a callable term.

type_error(atom, Mod)

Mod module prefix extracted from Head is not an atom.

existence_error(module, Mod)

Mod module prefix extracted from Head is not a module name.

permission_error(access, private_procedure, CulpritFunc)

CulpritFunc is the principal functor of Head and is the functor of a private procedure (built-in or static).

get_clause/3

Description

get_clause(PredInd,N,Clause)

Succeeds if PredInd is a functor of a dynamic predicate, and the Nth clause of the predicate is unifiable with

Clause. If PredInd contains a module name prefix then the clause is searched in that module. If PredInd

Chapter 17: Clause retrieval and information

89

doesn't contain module prefix, the current module is searched. If the number of clauses in the predicate is less

than N then an exception is raised.

Template and modes

get_clause(+predicate_specification, +integer, ?clause)

Examples

get_clause(mod1:foo/2,3,X)

Unifies the third clause of predicate foo/2 in module mod1 with X.

Errors

instantiation_error

PredInd is insufficiently instantiated.

instantiation_error

N is a variable

type_error(integer, N)

N is not an integer

domain_error(not_less_than_zero, N)

N is less than zero.

type_error(atom, Mod)

Mod module prefix extracted from PredInd is not an atom.

existence_error(module, Mod)

Mod extracted from PredInd is not a module name.

type_error(predicate_indicator, PS)

PS predicate specification, extracted from PredInd is not of the form Name / Arity.

type_error(atom, Name)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Name is not an atom.

type_error(integer, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity is not an integer.

domain_error(not_less_than_zero, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity < 0.

representation_error(max_arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity > 255.

permission_error(access,private_procedure, PS)

PS is the predicate specification and it is the functor of a built-in or static procedure.

existence_error(procedure, PS)

PS is the predicate specification and it is not a functor of a dynamic procedure. ErrInfo-Argno is 1.

existence_error(procedure, N)

There is no Nth clause in predicate. ErrInfo-Argno is 2.

clause_count/2

Description

clause_count(PredInd,N)

Succeeds if PredInd is a functor of a dynamic predicate and N is unified with the number of clauses in this

predicate. PredInd can contain a module name prefix, if it does then the predicate is searched in the specified

module, if it doesn't, the current module is searched.

Template and modes

clause_count(+predicate_specification, -number)

Examples

clause_count(mod1:foo/2,N)

Unifies N with number of clauses of predicate foo/2 in module mod1.

Built-in predicates

90

Errors

instantiation_error

PredInd is insufficiently instantiated.

type_error(atom, Mod)

Mod module prefix extracted from PredInd is not an atom.

existence_error(module, Mod)

Mod extracted from PredInd is not a module name.

type_error(predicate_indicator, PS)

PS predicate specification, extracted from PredInd is not of the form Name / Arity.

type_error(atom, Name)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Name is not an atom.

type_error(integer, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity is not an integer.

domain_error(not_less_than_zero, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity is a negative integer.

representation_error(max_arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity > 255.

permission_error(access,private_procedure, PS)

PS is the predicate specification and it is the functor of a built-in or static procedure.

current_predicate/1

Description

current_predicate(PredInd)

Succeeds if PredInd is a functor of one of the user-defined procedures in the database. PredInd has to be a

variable or a functor expression of form Name / Arity, without a module prefix.

This predicate is resatisfiable. On backtracking, it gives all the possible functors. If the database is modified

after a current_predicate/1 call, the modifications will not be effective from the point of view of the

current_predicate/1 call.

Each user-defined procedure is found, whether static or dynamic. A user-defined procedure is also found even

when all its clauses have been previously retracted.

This predicate lists the procedure functors of all modules. To find a functor in a specific module use

current_predicate/2.

Template and modes

current_predicate(?predicate_indicator) [ISO]

Examples

current_predicate(foo/2).

Succeeds if there is a user-defined procedure foo/2.

current_predicate(current_predicate/1).

Fails.

current_predicate(foo/Arity).

Succeeds unifying Arity with the arities of all user-defined procedures called foo.

Errors

type_error(predicate_indicator, PredInd)

PredInd is not a variable and it is not of the form Name / Arity.

Chapter 17: Clause retrieval and information

91

current_predicate/2

Description

current_predicate(Mod,PredInd)

Succeeds if PredInd is a functor for one of the user-defined procedures in the database of module Mod.

PredInd has to be a variable or a functor expression of form Name / Arity, without a module prefix.

This predicate is resatisfiable. On backtracking, it gives all the possible functors. If the database is modified

after a current_predicate/2 call, the modifications will not be effective from the point of view of the

current_predicate/2 call.

Each user-defined procedure is found, whether static or dynamic. A user-defined procedure is also found even

when all its clauses have been previously retracted.

Template and modes

current_predicate(+module_name,?predicate_indicator)

Examples

current_predicate(mod1, foo/2).

Succeeds if there is a user-defined procedure foo/2 in module mod1.

current_predicate(not_mod, foo/2).

If there is not module not_mod fails.

Errors

type_error(atom, Mod)

Mod is not an atom.

existence_error(module, Mod)

Mod is not a module name.

type_error(predicate_indicator, PredInd)

PredInd is not a variable and it is not of the form Name / Arity.

current_static_predicate/2

current_dynamic_predicate/2

Description

current_static_predicate(Mod,PredInd)

current_dynamic_predicate(Mod,PredInd)

These predicates are similar to

current_predicate(Mod,PredInd),

but they succeed only for static or dynamic predicates.

Template and modes

current_static_predicate(+mod_name,?predicate_indicator)

current_dynamic_predicate(+mod_name,?predicate_indicator)

Examples

current_static_predicate(mod1, foo/2).

Succeeds if there is a user-defined static predicate foo/2 in module mod1.

current_dynamic_predicate(mod1, dyn_foo/2).

Succeeds if there is a user-defined dynamic predicate dyn_foo/2 in module mod1.

Built-in predicates

92

current_static_predicate(mod1, X).

Succeeds unifying X with functor of a user_defined static predicate in module mod1. On backtrack all possible

functors are found.

Errors

type_error(atom, Mod)

Mod is not an atom.

existence_error(module, Mod)

Mod is not a module name.

type_error(predicate_indicator, PredInd)

PredInd is not a variable and it is not of the form Name / Arity.

current_standard_predicate/1

Description

current_standard_predicate(PredInd)

Succeeds if PredInd is the functor of a built-in (standard) predicate. PredInd has to be a variable or a functor

expression of form Name / Arity, without a module prefix.

This predicate is resatisfiable. On backtracking, it gives all the possible functors.

Template and modes

current_standard_predicate(?predicate_indicator)

Examples

current_standard_predicate(is/2).

Succeeds

current_standard_predicate(foo/2).

Fails.

Errors

type_error(predicate_indicator, PredInd)

PredInd is not a variable and it is not of the form Name / Arity.

current_module/1

Description

current_module(Mod)

Succeeds if Mod is the name of a user-defined module in the program. This predicate is resatisfiable, when it

is called with a variable argument it returns all the module names.

Template and modes

current_module(?module_name)

Examples

current_module(mod)

Succeeds if mod is the name of a user defined module.

Errors

type_error(atom, Mod)

Mod is neither a variable nor an atom.

Chapter 18: Clause creation and destruction

93

18. Clause creation and destruction

These predicates enable the Prolog database to be altered during execution.

All database modifying built-in predicates have a backtrackable version. These predicates have the same

behavior, but if a backtrack reaches them, all the global effect of predicates is undone. So, if a clause was

added, it is removed; and if a clause was removed, it is re-added. These predicates have the same names as

their non-backtrackable variants, with a suffix _b.

The non-backtrackable and backtrackable built-in predicates cannot be mixed when dealing with the same

dynamic procedure. That means that the first operation on a dynamic procedure decides whether it will be

handled in backtrackable or non-backtrackable way, and this decision cannot be changed later.

It is an interesting question what happens if during the execution of a dynamic predicate the predicate itself is

changed and then backtrack occurs. If some clauses had been added or removed, are they found by the

backtrack or they are not? The solution of CS-Prolog for this problem is the so-called logical view of dynamic

calls. It means that the definition of a dynamic predicate that is called is effectively frozen when the call is

made. For a call of a dynamic predicate, it will always contain exactly the same clauses it contained when the

call was made.

This logical view of dynamic calls can be explained better if we imagine that a call of a dynamic procedure

makes a virtual copy of the predicate, then executes the copy rather than the original procedure. Any changes

to the predicate are immediately reflected in the Prolog database, but not in the copy being executed. Therefore,

changes to an executed predicate will not be effective on backtracking. A subsequent call, however, makes and

executes a virtual copy of the modified Prolog database.

Note that any dynamic clause always belongs to one particular process; no other process has access to it.

Different processes can have different clauses with the same functor.

asserta/1

assertz/1

Description

asserta(Clause)

assertz(Clause)

Constructs a clause from the term Clause and adds the new clause to the database to the dynamic predicate

whose functor matches the functor of the head of Clause. The clause is added before all existing clauses in case

of asserta/1 and after all existing clauses in case of assertz/1. Clause can contain a module prefix; in this case

the clause is added into that module. Otherwise the current module is updated.

Template and modes

asserta(@clause) [ISO]

assertz(@clause) [ISO]

Examples

asserta(mod1:atom).

Succeeds.

assertz((test(X) :- cond(X), cond2(X))).

Succeeds.

Errors

instantiation_error

The head of Clause or its module prefix is uninstantiated.

type_error(atom, Mod)

Mod module prefix extracted from Clause is not an atom.

Built-in predicates

94

existence_error(module, Mod)

Mod module prefix extracted from Clause is not a module name.

type_error(callable, Culprit)

Either the head of Clause is not callable, in which case Culprit = Head, or Body contains a call Culprit which is not

callable.

type_error(atom, Culprit)

Body contains a prefixed call Culprit in which the module name prefix is not an atom.

domain_error(module_name, Culprit)

Body contains a prefixed call Culprit in which the module name prefix is the nil atom (not allowed as module name).

permission_error(modify, static_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a static procedure.

permission_error(modify, control_construct, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is a Prolog control construct.

permission_error(modify, builtin_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a built-in procedure.

permission_error(modify, backtrackable_procedure, CulpritFunc)

CulpritFunc is the principal functor of the head and this procedure was handled in backtrackable way.

representation_error(Flag)

An implementation-defined limit was exceeded during the compilation of the clause. Flag can be one of the following

atoms: max_clause_complexity, max_path_in_clause, max_call_in_clause, and max_call_in_path.

assertn/2

Description

assertn(Clause,N)

Constructs a clause form the term Clause and adds it as the Nth clause to the dynamic procedure whose

functor matches the functor of the head of Clause. Clause can contain a module prefix; in this case the clause

is added into that module. Otherwise the current module is updated. If N is 0 the clause is added as the last

one.

Template and modes

assertn(@clause,+integer)

Examples

assertn(mod1:atom,1).

Succeeds. It is equivalent with asserta(mod1:atom).

assertn((test(X) :- cond(X), cond2(X)), 0).

Succeeds. It is equivalent with an assertz call with same first argument.

assertn(module : (foo :- X), 4).

Succeeds. The added clause will be the fourth one.

Errors

instantiation_error

The head of Clause or its module prefix is uninstantiated.

instantiation_error

N is a variable

type_error(integer, N)

N is not an integer

domain_error(not_less_than_zero, N)

N is less than zero.

type_error(atom, Mod)

Mod module prefix extracted from Clause is not an atom.

existence_error(module, Mod)

Mod module prefix extracted from Clause is not a module name.

Chapter 18: Clause creation and destruction

95

type_error(callable, Culprit)

Either the head of Clause is not callable, in which case Culprit = Head; or Body contains a call Culprit that is not

callable.

type_error(atom, Culprit)

Body contains a prefixed call Culprit in which the module name prefix is not an atom.

domain_error(module_name, Culprit)

Body contains a prefixed call Culprit in which the module name prefix is the nil atom (not allowed as module name).

permission_error(modify, static_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a static procedure.

permission_error(modify, control_construct, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is a Prolog control construct.

permission_error(modify, builtin_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a built-in procedure.

permission_error(modify, backtrackable_procedure, CulpritFunc)

CulpritFunc is the principal functor of the head and this procedure was handled in backtrackable way.

representation_error(Flag)

An implementation-defined limit was exceeded during the compilation of the clause. Flag can be one of the following

atoms: max_clause_complexity, max_path_in_clause, max_call_in_clause, and max_call_in_path.

retract/1

Description

retract(Clause)

Succeeds if the functor of the head in Clause corresponds to a dynamic predicate, and there is a clause in the

database with term form H :- B which unifies with Clause. If the clause is a fact then B is true. This predicate

is removed from the database. Clause can contain a module name prefix, then the clause is searched there, if it

doesn't the current module is searched.

This predicate is resatisfiable. On backtracking removes all matching clauses. If the predicate is modified after

a retract/1 call, the modifications are not effective from the point of view of the retract/1 call. The predicate

behaves as if it were frozen in the moment of the call.

If the functor of the head in Clause corresponds to a static or built-in procedure, retract/1 raises an exception.

If the functor does not correspond to any procedure, the call simply fails.

Template and modes

retract(+clause) [ISO]

Examples

Suppose the database of the current module contains the clauses

country(switzerland).

country(sweden).

country(X) :-

in_eec(X).

Then

retract(country(switzerland)).

Succeeds and removes the first clause for country/1.

retract(country(uk)).

Fails.

retract((country(uk) :- Tail)).

Succeeds and removes the third clause for country/1. Tail is unified with in_eec(uk).

retract((country(X) :- true)).

Succeeds and removes the first clause for country/1. X is unified with switzerland. On resatisfaction,

succeeds and removes the second clause for country/1. X is unified with sweden.

Built-in predicates

96

retract((country(X) :- Y)).

Succeeds and removes the first clause for country/1. X is unified with switzerland and Y with true.

On resatisfaction, succeeds and removes the second clause for country/1. X is unified with sweden and Y

with true. On resatisfaction, succeeds and removes the third clause for country/1. X is unified with a

variable and Y with in_eec(X).

retract((country(X) :- in_eec(Y))).

Succeeds and removes the third clause for country/1. X is unified with Y.

Errors

instantiation_error

Clause head or the module prefix extracted from Clause is uninstantiated.

type_error(callable, Head)

Clause head extracted from Clause is neither a variable nor a callable term.

type_error(atom, Mod)

Mod module prefix extracted from Clause is not an atom.

existence_error(module, Mod)

Mod module prefix extracted from Clause is not a module name.

permission_error(modify, static_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a static procedure.

permission_error(modify, control_construct, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is a Prolog control construct.

permission_error(modify, builtin_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a built-in procedure.

permission_error(modify, backtrackable_procedure, CulpritFunc)

CulpritFunc is the principal functor of the head and this procedure was handled in backtrackable way.

retractn/2

Description

retractn(PredInd,N)

Removes the Nth clause of the dynamic predicate with predicate indicator PredInd. PredInd can contain a

module prefix in which case the clause is searched in that module; otherwise the current module is updated.

Template and modes

retractn(+predicate_indicator,+integer)

Examples

retractn(mod1:foo/2,3)

Removes the third clause of predicate foo/2 in module mod1.

Errors

instantiation_error

PredInd is insufficiently instantiated.

instantiation_error

N is a variable

type_error(integer, N)

N is not an integer

domain_error(not_less_than_zero, N)

N is less than zero.

type_error(atom, Mod)

Mod module prefix extracted from PredInd is not an atom.

existence_error(module, Mod)

Mod extracted from PredInd is not a module name.

Chapter 18: Clause creation and destruction

97

type_error(predicate_indicator, PS)

PS, the predicate indicator extracted from PredInd, is not of the form Name / Arity.

type_error(atom, Name)

PS, the predicate indicator extracted from PredInd, is of the form Name / Arity, where Name is not an atom.

type_error(integer, Arity)

PS, the predicate indicator extracted from PredInd, is of the form Name / Arity, where Arity is not an integer.

domain_error(not_less_than_zero, Arity)

PS, the predicate indicator extracted from PredInd, is of the form Name / Arity, where Arity < 0.

representation_error(max_arity)

PS, the predicate indicator extracted from PredInd, is of the form Name / Arity, where Arity > 255.

permission_error(modify, static_procedure, PS)

PS, the predicate indicator extracted from PredInd, is the name of a static procedure.

permission_error(modify, control_construct, PS)

PS, the predicate indicator extracted from PredInd, is a Prolog control construct.

permission_error(modify, builtin_procedure, PS)

PS, the predicate indicator extracted from PredInd, is the name of a built-in procedure.

existence_error(procedure, PS)

PS, the predicate indicator extracted from PredInd, is not a functor of a dynamic procedure. ErrInfo-Argno is 1.

existence_error(procedure, N)

There is no Nth clause in predicate. ErrInfo-Argno is 2.

permission_error(modify, backtrackable_procedure, PS)

PS, the predicate indicator extracted from PredInd, and this procedure is being handled in backtrackable way.

abolish/1

Description

abolish(PredInd)

Removes all clauses of the dynamic predicate whose functor is equal to PredInd. PredInd can contain a

module prefix in which case that module is changed; otherwise the current module is updated. The predicate

succeeds even if there are no clauses to be removed.

Template and modes

abolish(+predicate_indicator) [ISO]

Examples

abolish(mod:foo/2).

Succeeds and removes all clauses of predicate foo/2 in module mod.

Errors

instantiation_error

PredInd is insufficiently instantiated.

type_error(atom, Mod)

Mod module prefix extracted from PredInd is not an atom.

existence_error(module, Mod)

Mod extracted from PredInd is not a module name.

type_error(predicate_indicator, PS)

PS predicate specification, extracted from PredInd is not of the form Name / Arity.

type_error(atom, Name)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Name is not an atom.

type_error(integer, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity is not an integer.

domain_error(not_less_than_zero, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity < 0.

Built-in predicates

98

representation_error(max_arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity > 255.

permission_error(modify, static_procedure, PS)

PS, the predicate indicator extracted from PredInd, is the name of a static procedure.

permission_error(modify, control_construct, PS)

PS, the predicate indicator extracted from PredInd, is a Prolog control construct.

permission_error(modify, builtin_procedure, PS)

PS, the predicate indicator extracted from PredInd, is the name of a built-in procedure.

permission_error(modify, backtrackable_procedure, PS)

PS is the predicate specification and this procedure was handled in backtrackable way.

asserta_b/1

assertz_b/1

Description

asserta_b(Clause)

assertz_b(Clause)

Constructs a clause form the term Clause and adds it to the database to the dynamic predicate whose functor

matches the functor of the head of Clause. The clause is added before all existing clauses in case of

asserta_b/1 and after all existing clauses in case of assertz_b/1. Clause can contain a module prefix, in which

case the clause is added into that module. Otherwise the current module is updated.

On backtrack, the clause that was added is removed from the data base.

Template and modes

asserta_b(@clause)

assertz_b(@clause)

Examples

asserta_b(mod1:atom).

Succeeds. When backtracking this clause is removed.

assertz_b((test(X) :- cond(X), cond2(X))).

Succeeds. When backtracking this clause is removed.

Errors

instantiation_error

The head of Clause or its module prefix is uninstantiated.

type_error(atom, Mod)

Mod module prefix extracted from Clause is not an atom.

existence_error(module, Mod)

Mod module prefix extracted from Clause is not a module name.

type_error(callable, Culprit)

Either the head of Clause is not callable, in which case Culprit = Head, or Body contains a call Culprit which is not

callable.

type_error(atom, Culprit)

Body contains a prefixed call Culprit in which the module name prefix is not an atom.

domain_error(module_name, Culprit)

Body contains a prefixed call Culprit in which the module name prefix is the nil atom (not allowed as module name).

permission_error(modify, static_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a static procedure.

permission_error(modify, control_construct, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is a Prolog control construct.

Chapter 18: Clause creation and destruction

99

permission_error(modify, builtin_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a built-in procedure.

permission_error(modify, nonbacktrackable_procedure, CulpritFunc)

CulpritFunc is the principal functor of the head and this procedure was handled in non-backtrackable way.

representation_error(Flag)

An implementation-defined limit was exceeded during the compilation of the clause. Flag can be one of the following

atoms: max_clause_complexity, max_path_in_clause, max_call_in_clause, and max_call_in_path.

assertn_b/2

Description

assertn_b(Clause,N)

Constructs a clause form the term Clause and adds it as the Nth clause of the dynamic predicate whose

functor matches the functor of the head of Clause. Clause can contain a module prefix, in which case the

clause is added into that module. Otherwise the current module is updated. If N is 0 the clause is added as the

last one.

On backtrack, the clause that was added is removed from the data base.

Template and modes

assertn_b(@clause,+integer)

Examples

assertn_b(mod1:atom,1).

Succeeds. It is equivalent with asserta(mod1:atom).

assertn_b((test(X) :- cond(X), cond2(X)), 0).

Succeeds. It is equivalent with an assertz call with same first argument.

assertn_b(module : (foo :- X), 4).

Succeeds. The added clause will be the fourth one.

Errors

instantiation_error

The head of Clause or its module prefix is uninstantiated.

instantiation_error

N is a variable

type_error(integer, N)

N is not an integer

domain_error(not_less_than_zero, N)

N is less than zero.

type_error(atom, Mod)

Mod module prefix extracted from Clause is not an atom.

existence_error(module, Mod)

Mod module prefix extracted from Clause is not a module name.

type_error(callable, Culprit)

Either the head of Clause is not callable, in which case Culprit = Head; or Body contains a call Culprit that is not

callable.

type_error(atom, Culprit)

Body contains a prefixed call Culprit in which the module name prefix is not an atom.

domain_error(module_name, Culprit)

Body contains a prefixed call Culprit in which the module name prefix is the nil atom (not allowed as module name).

permission_error(modify, static_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a static procedure.

permission_error(modify, control_construct, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is a Prolog control construct.

Built-in predicates

100

permission_error(modify, builtin_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a built-in procedure.

permission_error(modify, nonbacktrackable_procedure, CulpritFunc)

CulpritFunc is the principal functor of the head and this procedure was handled in non-backtrackable way.

representation_error(Flag)

An implementation-defined limit was exceeded during the compilation of the clause. Flag can be one of the following

atoms: max_clause_complexity, max_path_in_clause, max_call_in_clause, and max_call_in_path.

retract_b/1

Description

retract_b(Clause)

Is true if the functor of the head in Clause corresponds to a dynamic predicate, and there is a clause in the

database with term form H :- B that unifies with Clause. This predicate is removed from the database. If

Clause contains a module name prefix, then the clause is searched there, if it doesn't the current module is

searched.

This predicate is resatisfiable. On backtracking removes all matching clauses. If the predicate is modified after

a retract_b/1 call, the modifications are not effective from the point of view of the retract_b/1 call. The

predicate behaves as if it was frozen in the moment of the call.

On backtrack, the clause that was removed is added back to the data base.

Template and modes

retract_b(+clause)

Examples

Suppose the database of the current module contains the clauses

country(switzerland).

country(sweden).

country(X) :-

in_eec(X).

Then

retract_b(country(switzerland)).

Succeeds and removes the first clause for country/1. If this call is backtracked the clause reappears in the

database.

retract_b(country(uk)).

Fails.

retract_b((country(uk) :- Tail)).

Succeeds and removes the third clause for country/1. Tail is unified with in_eec(uk). If this call is

backtracked the clause reappears in the database.

retract_b((country(X) :- true)).

Succeeds and removes the first clause for country/1. X is unified with switzerland. If this call is

backtracked the clause reappears in the database and the retract_b/1 removes the second clause for

country/1. X is unified with sweden.

Errors

instantiation_error

Clause head or the module prefix extracted from Clause is uninstantiated.

type_error(callable, Head)

Clause head extracted from Clause is neither a variable nor a callable term.

type_error(atom, Mod)

Mod module prefix extracted from Clause is not an atom.

existence_error(module, Mod)

Mod module prefix extracted from Clause is not a module name.

Chapter 18: Clause creation and destruction

101

permission_error(modify, static_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a static procedure.

permission_error(modify, control_construct, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is a Prolog control construct.

permission_error(modify, builtin_procedure, CulpritFunc)

CulpritFunc, the principal functor of the head of the clause, is the name of a built-in procedure.

permission_error(modify, nonbacktrackable_procedure, CulpritFunc)

CulpritFunc is the principal functor of the head and this procedure was handled in non-backtrackable way.

retractn_b/2

Description

retractn_b(PredInd,N)

Removes the Nth clause of the dynamic predicate whose functor is equal to PredInd. PredInd can contain a

module prefix, in which case the clause is searched in that module; otherwise the current module is updated.

On backtrack, the clause that was removed is added back to the data base.

Template and modes

retractn_b(+predicate_indicator,+integer)

Examples

retractn_b(mod1:foo/2,3)

Removes the third clause of predicate foo/2 in module mod1.

Errors

instantiation_error

PredInd is insufficiently instantiated.

instantiation_error

N is a variable

type_error(integer, N)

N is not an integer

domain_error(not_less_than_zero, N)

N is less than zero.

type_error(atom, Mod)

Mod module prefix extracted from PredInd is not an atom.

existence_error(module, Mod)

Mod extracted from PredInd is not a module name.

type_error(predicate_indicator, PS)

PS predicate specification, extracted from PredInd is not of the form Name / Arity.

type_error(atom, Name)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Name is not an atom.

type_error(integer, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity is not an integer.

domain_error(not_less_than_zero, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity < 0.

representation_error(max_arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity > 255.

permission_error(modify, static_procedure, PS)

PS, the predicate indicator extracted from PredInd, is the name of a static procedure.

permission_error(modify, control_construct, PS)

PS, the predicate indicator extracted from PredInd, is a Prolog control construct.

permission_error(modify, builtin_procedure, PS)

PS, the predicate indicator extracted from PredInd, is the name of a built-in procedure.

Built-in predicates

102

existence_error(procedure, PS)

PS is the predicate specification and it is not a functor of a dynamic procedure. ErrInfo-Argno is 1.

existence_error(procedure, N)

There is no Nth clause in predicate. ErrInfo-Argno is 2.

permission_error(modify, nonbacktrackable_procedure, PS)

PS is the predicate specification and this procedure was handled in non-backtrackable way.

abolish_b/1

Description

abolish_b(PredInd)

Removes all clauses of the dynamic predicate whose functor is equal to PredInd. PredInd can contain a

module prefix, in which case that module is changed; otherwise the current module is updated.

On backtrack, the clauses that was removed are added back to the data base.

Template and modes

abolish_b(+predicate_indicator)

Examples

abolish_b(mod:foo/2).

Succeeds and removes all clauses of predicate foo/2 in module mod.

Errors

instantiation_error

PredInd is insufficiently instantiated.

type_error(atom, Mod)

Mod module prefix extracted from PredInd is not an atom.

existence_error(module, Mod)

Mod extracted from PredInd is not a module name.

type_error(predicate_indicator, PS)

PS predicate specification, extracted from PredInd is not of the form Name / Arity.

type_error(atom, Name)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Name is not an atom.

type_error(integer, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity is not an integer.

domain_error(not_less_than_zero, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity < 0.

representation_error(max_arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity > 255.

permission_error(modify, static_procedure, PS)

PS, the predicate indicator extracted from PredInd, is the name of a static procedure.

permission_error(modify, control_construct, PS)

PS, the predicate indicator extracted from PredInd, is a Prolog control construct.

permission_error(modify, builtin_procedure, PS)

PS, the predicate indicator extracted from PredInd, is the name of a built-in procedure.

permission_error(modify, nonbacktrackable_procedure, PS)

PS is the predicate specification and this procedure was handled in non-backtrackable way.

Chapter 19: Global value handling

103

19. Global value handling

If a term is to be stored outside the evaluation stack for later retrieval only, then using the assert-retract

predicates is a bit wasteful, because assert generates executable code from the clause, which is not needed in

this case. The predicates in this group allow the user to store and retrieve Prolog terms in a more compact non-

executable form, associating them with arbitrarily selected value names.

Integers and atoms can be used as value names. The expression table_key is used in templates and exception

terms to indicate that the type of a value-name argument should be integer or atom.

The name global value is used to emphasize the fact that the storage structure employed (value table, for

short) is module-independent, i.e. the same values can be accessed from different modules (but each process

has a separate value table).

The value table can contain entries of two distinct kinds: backtackable and non-backtrackable ones. Different

predicates are used to create and modify each; some of them operate only on non-backtrackable entries.

The non-backtrackable entries in general maintain a stack-like structure. The values associated with the global

name form a stack of individual values (terms). Only the current top of the stack can be accessed (modified or

retrieved). Deleting the top of the stack (pop) exposes the previous level of the stack (if there remains any). The

terms stored this way are copies of the corresponding argument of the predicate that placed them into the value

table (cf. copy_term).

The backtrackable entries maintain only a single term; there is no stack structure at all. In this case

backtracking across a value-modifying predicate call automatically restores the previous state of the entry. The

value entry is the term itself, not a copy, so the stored value will follow the changes of the term (when any

variables get instantiated in it). A backtrackable global value entry can be looked upon as a hidden argument

passed down to every called predicate.

Note that values are local to a process. Different processes can have different values stored under the same

name.

19.1 Clist values

There are special variants of value terms stored in non-backtrackable entries for accumulating lists

incrementally, called clist values. They are used internally by the all-solutions predicates, but are made

available for application programs, too, as they might be useful in some circumstances. These special list

values must be initialized by the specific push_empty_[k][o]cl_value/2 predicate corresponding to the desired

type of the list to be built at the next stack level. The type of the created list is chosen in accordance with the

presence or absence of the optional mnemonic letters: k for keyed and o for ordered. There are also special

add_to_[k]cl_value/[2;3] predicates for incrementally adding new items to the list.

Keyed clist serve for partitioning a collection of terms into sublists according to some partition keys explicitly

specified in the add_to_kcl_value/3 predicate (not to be confused with the value name, which is also called

table_key). Non-empty values of this kind form a two-level list structure. The elements of the upper level list

are sublists, where the first (head) item is the specific partition key, and the rest consists of the items added

under this particular partition key.

Unkeyed clist values consist of a simple list of the individually added terms.

In an ordered unkeyed clist, the accumulated list is an ordered set of the added terms (without duplicates,

ordered according to the term-precedence relation, see section 14.1). In an unordered unkeyed clist duplicates

are not eliminated, and the items are in order of arrival.

For keyed clists ordering applies to the partition sublists excepting the partition key placed at the head of the

sublist. The partitions themselves are in the order of the first occurrence of the individual partition keys. (As a

matter of fact the key does not belong to the sublist, a partition is only for simplicity's sake retrieved as

[<key>|<itemlist>] instead of the more natural <key> - <itemlist> structure representation.)

When non-ground terms occur as partition key and/or list item, the following are to be taken into account.

Non-backtrackable value items are stored as copies of the passed arguments, where each variable occurring in

the term is replaced by a new unnamed variable. In the case of keyed clists, first a temporary term is built that

contains both the specified partition key and the item to be stored as its subterms; and a copy of this temporary

Built-in predicates

104

term is manipulated further. In this way, those variables that occur in both the key and the item will remain

common.

There is a peculiarity in the handling of keyed ordered clists, due to the needs of the setof/3 built-in predicate.

If some partition keys specified in different activations of the add_to_kcl_value/3 predicate are variants of

each other (i.e. can be brought to identical form by systematically renaming their variables) then they are

treated as identical.

19.2 Overview of predicate use

Backtrackable values are created and modified by set_value_b/2. The generic get_value/2 can be used for

retrieval. Backtrackable values are destroyed implicitly when backtracking occurs across the set_value_b/2 call

that created the value entry.

Non-backtrackable value entry stack levels are managed by predicates from the push_value and pop_value

family. For the sake of similarity with the backtrackable case, the first level can also be created implicitly for

an ordinary (non-clist) entry. The value table entry is created when the first push_value type call is issued

against a currently non-associated table key. The entry is destroyed when its last stack level is removed in

response to a pop_value/1,2 call.

Ordinary non-backtrackable value entries are created by the first push_value/2 call issued against a currently

non-existing value table entry, either explicitly or implicitly from the first set_value/2 call. Further stack levels

are created by subsequent push_value/2 calls. The value term stored at the current stack level can be changed

by set_value/2. The term stored at the current level can be retrieved using either get_value/2, which leaves the

entry unchanged, or pop_value/2, which unifies its second argument with the stored term and then removes

the current level (top) from the value stack. pop_value/1 is used to remove the current level without retrieving

the term stored there.

Clist values can be stored at any stack level of a non-backtrackable value table entry. The level must be

initialized by the appropriate member of the push_empty_[k][o]cl_value/1 predicate group, which sets the

value to the empty list (of the proper kind). The clist value at the current level can be modified (new item

added) by the add_to_cl_value/2 predicate for a non-keyed clist, or the add_to_kcl_value/2 predicate for a

keyed clist. get_value/2 and pop_value/1,2 can be used for clist values just as for ordinary ones.

The set of incr_value/1,2,3 and incr_value_b/1,2,3 convenience predicates can be used to increase or decrease

numeric values stored at the current top stack level of non-backtrackable entries and in backtrackable entries,

respectively, in one call.

set_value/2

Description

set_value(Name, Value)

Stores a copy of the term Value under the name Name for the current level of a non-backtrackable value. The

stored copy can later be retrieved using get_value/2 or pop_value/2. The term Value is first copied, so if it

contains variables, then in the stored term the variables are substituted by new ones. If the entry for Name does

not exist, creates it (performs an implicit push_value/2), otherwise the previous (ordinary) value at the current

level is replaced. In the latter case, if the current stack level contains a clist value, an error occurs.

Template and modes

set_value(+table_key,@term).

Examples

set_value(counter, 0).

Associates the value 0 with the name counter.

set_value(data, f(X,Y)).

Sets the value f(_,_) to the name data. If later on this value is retrieved, the two arguments of the term

f/2 will be new variables, different from the original X and Y.

Chapter 19: Global value handling

105

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(modify, value, Name)

Name was previously associated with a value through set_value_b/2 or the current stack level was initialized for a clist

term.

push_value/2

Description

push_value(Name, Value)

Stores a copy of the term Value at the next level of the stack associated with the non-backtrackable value entry

named Name, and makes that level the current top of the stack. The stored term can be retrieved later using

get_value/2 or pop_value/2. The term Value is copied first, so any variables occurring in it are replaced by

new ones. This predicate creates a new level on the stack of values. If Name was assigned previously a value,

the previous value is not lost. A subsequent pop_value/1,2 will restore that value.

If there is no value table entry associated with Name at the time of the call, then a new (non-backtrackable)

entry is created for Name and the term is stored at the first stack level.

Template and modes

push_value(+table_key,@term).

Examples

push_value(counter, 11).

Sets the value 11 to the name counter. After a later pop_value(counter) call the previous value of

counter is restored.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(modify, value, Name)

Name was previously associated with a value through set_value_b/2.

pop_value/1

pop_value/2

Description

pop_value(Name)

Is equivalent with

pop_value(Name,_)

pop_value(Name,Term)

Unifies Term with the term stored at the current level of the value stack associated with Name, then removes

the current level from the stack. If this level was the last one then the value table entry is destroyed and Name

becomes dissociated. Otherwise, the previous stack level becomes the current top (the value stored before the

last push is restored).

Built-in predicates

106

Template and modes

pop_value(+table_key)

pop_value(+table_key, ?term).

Examples

pop_value(counter).

Restores the value of counter to the state that it had before the last push_value/2 call.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(access, value, Name)

There is no value associated with table key Name.

permission_error(modify, value, Name)

Name currently is associated with a backtrackable value table entry.

delete_value/1

Description

delete_value(Name)

Deletes the non-backtrackable value table entry associated with Name. All stored terms at any level of the

stack are lost. Name becomes a non value name (dissociated).

Template and modes

delete_value(+table_key).

Examples

delete_value(counter).

Deletes all values of counter, all subsequent retrieving of value associated to this name will cause an

exception.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(modify, value, Name)

Name is currently associated with a backtrackable value table entry (via set_value_b/2).

get_value/2

Description

get_value(Name, Term)

Retrieves the term stored under the name Name and unifies it with Term. This predicate can be used for any

kind of value table entries. For non-backtrackable entries, the term stored on the current top level is retrieved.

The state of the entry remains unchanged.

Template and modes

get_value(+table_key, ?term).

Chapter 19: Global value handling

107

Examples

get_value(counter,X).

Unifies X with the value last associated with the value name counter.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(access, value, Name)

There is no value assigned to table key Name.

test_value/1

test_value/2

Description

test_value(Name)

is equivalent with

test_value(Name, _)

test_value(Name, Term)

If there is no current value associated with Name then the predicate fails. Otherwise it is the same as

get_value/2; i.e. retrieves the term stored under the name Name and unifies it with Term.

Template and modes

test_value(+table_key).

test_value(+table_key, ?term).

Examples

test_value(optional).

If the name optional has no value associated with it (not set previously or deleted) then fails, otherwise

succeeds.

test_value(counter,X).

Unifies X with the value last associated with the value name counter, or fails if no value is currently

associated with counter.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

set_value_b/2

Description

set_value_b(Name, Value)

Stores the term Value in a backtrackable value table entry under the name Name. The stored term can be later

retrieved using get_value/2. The Value term is not copied, so if it contains variables, then in the stored term

these variables are the same ones that are in Value. If such a variable becomes later instantiated, the stored

term will follow the changes.

Built-in predicates

108

If Name was assigned previously a value, that previous value will be restored when backtracking across this

call occurs.

Template and modes

set_value_b(+table_key, @term).

Examples

set_value_b(counter, 0).

Sets the value 0 to the name counter. When backtracking on this call, the previous value will be restored, or

if there was no value associated to counter previously, then this name will no longer be a value name.

set_value_b(data, f(X,Y)).

Sets the value f(X,Y) to the name data. If later on this value is retrieved, the two arguments of the term

f/2 will be the same variables as X and Y. When backtracking on this call, the previous value, if any, will be

restored.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(modify, value, Name)

Name is currently associated with a non-backtrackable value table entry.

incr_value/1

incr_value /2

incr_value /3

Description

incr_value(Name)

Is equivalent with

incr_value(Name, 1)

incr_value(Name, Delta)

Is equivalent with

incr_value(Name, Delta, _)

incr_value(Name, Delta, PrevValue)

Increments the number stored under the name Name with Delta. PrevValue is unified with the previous value.

This unification takes place before storing the incremented value, so if it fails, the new (incremented) value is

not stored at all.

The effect of incr_value(Name, Delta, Prev_value) can be described by the following procedure

definition:

incr_value(Name, Delta, Prev_value) :-

 get_value(Name, Prev_value),

 V is Prev_value + Delta,

 set_value(Name, V).

Template and modes

incr_value(+table_key).

incr_value(+table_key, +number, @term).

incr_value(+table_key, +number, @term).

Chapter 19: Global value handling

109

Examples

incr_value(counter, 12).

Increments the value associated with the name counter by 12.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(access, value, Name)

There is no value assigned to table key Name.

permission_error(modify, value, Name)

The value assigned to table key Name is not a number. ErrInfo-Other will contain this non-numeric value.

instantiation_error

Delta is uninstantiated.

type_error(number, Delta)

Delta is not a variable and not an integer or float.

permission_error(modify, value, Name)

Name is currently associated with a backtrackable value table entry.

evaluation_error(Flag)

The addition caused an overflow error. Flag is one of the following flags: int_overflow, float_overflow.

incr_value_b/1

incr_value_b/2

incr_value_b/3

Description

incr_value_b(Name)

Is equivalent with

incr_value_b(Name, 1)

incr_value_b(Name, Delta)

Is equivalent with

incr_value_b(Name, Delta, _)

incr_value_b(Name, Delta, PrevValue)

Increments the number stored under the name Name with Delta. PrevValue is unified with the previous value.

This unification takes place before storing the incremented value, so if it fails, the new (incremented) value is

not stored at all. The value modification is backtrackable, so the previous value is restored if backtracking

across this call occurs.

The effect of incr_value(Name, Delta, Prev_value) can be described by the following procedure

definition:

incr_value_b(Name, Delta, Prev_value) :-

 get_value(Name, Prev_value),

 V is Prev_value + Delta,

 set_value_b(Name, V).

Template and modes

incr_value_b(+table_key).

incr_value_b(+table_key, +number, @term).

incr_value_b(+table_key, +number, @term).

Built-in predicates

110

Examples

incr_value_b(counter, 12).

Increments the value associated with the name counter by 12.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(access, value, Name)

There is no value assigned to table key Name.

permission_error(modify, value, Name)

The value assigned to table key Name is not a number. ErrInfo-Other will contain this non-numeric value.

instantiation_error

Delta is uninstantiated.

type_error(number, Delta)

Delta is not a variable and not an integer or float.

permission_error(modify, value, Name)

Name is currently associated with a non-backtrackable value table entry.

evaluation_error(Flag)

The addition caused an overflow error. Flag is one of the following flags: int_overflow, float_overflow.

push_empty_cl_value/1

push_empty_ocl_value/1

push_empty_kcl_value/1

push_empty_kocl_value/1

Description

All predicates in this group initialize the next stack level of the non-backtrackable value table entry associated

with Name (the only argument of the call) to an empty clist value, the exact kind of which depends on the

predicate called. If no entry is currently associated with Name then the call creates one for it and initializes the

first stack level. The clist value stored at the top level can be changed by adding list items to it in subsequent

add_to_[k]cl_value/2 calls. The stored clist term can be retrieved at any time using get_value/2 (as long as it

is at the current top). The retrieved value is a normal term equivalent with the stored clist structure. The level

can be removed by pop_value/1,2, where pop_value/2 also retrieves the value stored at the level just removed.

All of these can be looked upon as special variants of the

push_value(Name, [])

call, the difference being only in the subsequent value-modifying calls allowed.

The variations in the effect of the individual predicates are as follows:

push_empty_cl_value(Name)

Initializes the stack level to an empty unkeyed unordered clist value. List items can be added to the current

clist value by add_to_cl_value/2 calls.

push_empty_ocl_value(Name)

Initializes the stack level to an empty unkeyed ordered clist value. List items can be added to the current clist

value by add_to_cl_value/2 calls.

push_empty_kcl_value(Name)

Initializes the stack level to an empty keyed unordered clist value (for accumulating lists of terms under

specified partition keys). Items can be added to the current clist value by add_to_kcl_value/3 calls.

push_empty_kocl_value(Name)

Chapter 19: Global value handling

111

Initializes the stack level to an empty keyed ordered clist value (for accumulating ordered sets of terms under

specified partition keys). Items can be added to the current clist value by add_to_kcl_value/3 calls.

Template and modes

push_empty_cl_value(+table_key).

push_empty_ocl_value(+table_key).

push_empty_kcl_value(+table_key).

push_empty_kocl_value(+table_key).

Examples

push_empty_cl_value(bag).

Associates an empty unordered unkeyed clist with the name bag.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(access, value, Name)

There is no value assigned to table key Name.

permission_error(modify, value, Name)

Name is currently associated with a non-backtrackable value table entry.

add_to_cl_value/2

Description

add_to_cl_value(Name,Term)

This predicate can be used to change the unkeyed (ordered or unordered) clist term stored at the current top

level of the stack of the non-backtrackable value table entry associated with the table-key Name.

In the case when an unordered clist is being modified, a copy of Term is simply appended to the list stored as

clist.

When an ordered clist is to be changed, a new term T1 is built as a copy of Term, and if the list already

contains an item which is equal with T1 (under term comparison) then the clist remains unchanged (duplicate

elimination). Otherwise, T1 is inserted at the position determined by the term precedence relation so that the

list is in increasing order. Note that if T1 contains any variables then no item already on the list can be equal

with it because of the variable renaming during copy.

Template and modes

add_to_cl_value(+table_key, ?term).

Examples

add_to_cl_value(bag,foo(a,b)).

Inserts a new element to the unkeyed clist associated with the name bag.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(access, value, Name)

There is no value assigned to table key Name.

permission_error(modify, value, Name)

Name was previously associated with a value using some value-handling predicate other then the appropriate

push_empty_cl_value/1 or push_empty_ocl_value/1 predicate.

Built-in predicates

112

add_to_kcl_value/3

Description

add_to_kcl_value(Name, Term, Partition_key)

This predicate can be used to change the keyed (ordered or unordered) clist term stored at the current top level

of the stack of the non-backtrackable value table entry associated with the table-key Name. Keyed clists are

used to collect separate unordered lists or ordered sets of items grouped according to explicitly specified

partition keys.

In both the ordered and unordered case at first a temporary term is built containing Term and Partition_key

as its subterms, and a copy of this is prepared for further manipulation. In this way, common variables

occurring in the original arguments remain common after copying.

Next the Partition_key portion of the copy is separated as K1, and the currently stored clist value is looked up

to see whether or not it already contains a sublist with a partition key which is equivalent with, or is a variant

of, K1. If such a sublist is found, then the rest of the sublist is chosen as the target for insertion, otherwise a

new sublist is appended to the clist with K1 as its head item and the empty list as its tail, and this empty tail is

selected as the target.

The final action is the incorporation of T1, the Term portion of the prepared copy, into the target list. This is

done exactly the same way as in the case of add_to_cl_value/3, only the target lists are different.

Template and modes

add_to_kcl_value(+table_key, ?term, ?term).

Examples

add_to_cl_value(set,foo(a,b),bar).

Inserts a new element with partition key bar to the keyed list associated with the name bag.

Errors

instantiation_error

Name is uninstantiated.

type_error(table_key, Name)

Name is not a variable and not an atom or integer.

permission_error(access, value, Name)

There is no value assigned to table key Name.

permission_error(modify, value, Name)

Name was previously associated with a value using some value-handling predicate other then the appropriate

push_empty_kcl_value/1 or push_empty_kocl_value/1 predicate.

Chapter 20: Binding flexible predicates

113

20. Binding flexible predicates

These predicate change the bindings that link a flexible imported predicate to another predicate (see

section 2.4). Bindings are process-specific. In this respect, flexible predicates are like dynamic predicates (but

there is no static initialization for them). A flexible predicate can be bound to another flexible predicate, but

such bindings must not form a closed cycle.

When a flexible predicate is unbound, a call for it raises an exception regardless of the current state of the

unknown Prolog flag.

When a flexible predicate is bound to another predicate (compatible with it, i.e., with the same arity), then a

call is equivalent with the call of the predicate which is the target of the binding.

bind/2

Description

bind(PredInd,Imp)

Links the flexible predicate with predicate indicator PredInd to the predicate specified by Imp. After

establishing the link, a call of PredInd will be equivalent with a call of the link target.

Both PredInd and Imp can have module prefix for direct import. Imp can be given as an atom (after removing

the optional module prefix), in which case it is conceptually augmented with the arity of PredInd to yield a

complete predicate indicator. Otherwise, Imp must be a predicate indicator compatible with PredInd.

If PredInd is a partially flexible predicate, that is, the module of the target predicate is explicitly defined in the

corresponding import directive, then Imp must denote a predicate in that module which is also the default for

it without explicit prefixing.

Both arguments must specify items visible from the place of the bind/2 call, with one extension: if Imp is

partially flexible, then a local predicate from the restriction module also can be bound to, even if it is not

normally visible at the place of the call. (This is for maintaining compatibility with earlier releases).

PredInd can be an unbound flexible predicate or a bound one (with a previous bind/2). In the latter case, the

previous link is removed.

Imp can also be a flexible predicate, but the requested binding must not create a closed loop of circular links.

Template and modes

bind(+predicate_indicator, +atom_or_predicate_indicator).

Examples

bind(foo/2,oof).

The predicate foo/2 in the current module is bound to the predicate oof/2 in the same module.

bind(mod:store/2,set_value/2).

The predicate store/2 in the module mod is bound to the standard predicate set_value/2.

Errors

instantiation_error

PredInd or Imp is insufficiently instantiated.

type_error(atom, Mod)

Mod predicate specification, extracted from PredInd is not an atom. ErrInfo-Argno is 1.

existence_error(module, Mod)

Mod extracted from PredInd is not a module name. ErrInfo-Argno is 1.

type_error(atom, Mod)

Mod predicate specification, extracted from Imp is not an atom. ErrInfo-Argno is 2.

existence_error(module, Mod)

Mod extracted from Imp is not a module name. ErrInfo-Argno is 2.

Built-in predicates

114

type_error(predicate_indicator, PS)

PS predicate specification, extracted from PredInd is not of the form Name / Arity. ErrInfo-Argno is 1.

type_error(atom, Name)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Name is not an atom.

ErrInfo-Argno is 1.

type_error(integer, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity is not an integer.

ErrInfo-Argno is 1.

domain_error(not_less_than_zero, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity < 0. ErrInfo-Argno is

1.

representation_error(max_arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity > 255. ErrInfo-Argno

is 1.

type_error(predicate_indicator, PS)

PS predicate specification, extracted from Imp is not of the form Name / Arity. ErrInfo-Argno is 2.

type_error(atom, Name)

PS predicate specification, extracted from Imp is of the form Name / Arity, where Name is not an atom. ErrInfo-

Argno is 2.

type_error(integer, Arity)

PS predicate specification, extracted from Imp is of the form Name / Arity, where Arity is not an integer. ErrInfo-

Argno is 2.

domain_error(not_less_than_zero, Arity)

PS predicate specification, extracted from Imp is of the form Name / Arity, where Arity < 0. ErrInfo-Argno is 2.

representation_error(max_arity)

PS predicate specification, extracted from Imp is of the form Name / Arity, where Arity > 255. ErrInfo-Argno is 2.

existence_error(procedure, PS)

PS is the predicate specification extracted from PredInd and this functor does not belong to a procedure visible at the

place of the call. ErrInfo-Argno is 1.

permission_error(bind, non_flex, PS)

PS is the predicate specification extracted from PredInd and it is the functor of a non-flexible procedure.

permission_error(bind, part_flex, PS)

PS denotes a partially flexible predicate with fixed module. The module prefix, extracted from Imp is not equal to this

module.

permission_error(bind, wrong_procedure, Arity)

Arity of PredInd is not equal to the arity Arity extracted from Imp.

existence_error(procedure, PS)

PS is the predicate specification extracted from Imp and this functor does not belong to a procedure. ErrInfo-Argno is

2.

permission_error(bind, local_procedure, PS)

PS is the predicate specification extracted from Imp and it is the functor of a local (non-exported) procedure not visible

from the place of the call.

permission_error(bind, would_create_loop, PS)

Imp is also a flexible predicate, currently bound (directly or indirectly) to PredInd. Creating the requested binding

would close a binding cycle.

unbind/1

Description

unbind(PredInd)

The current linkage of the flexible predicate PredInd to another predicate is removed. After unbinding, the

calls of PredInd predicate will cause an existence_error exception.

Template and modes

unbind(+predicate_indicator)

Chapter 20: Binding flexible predicates

115

Examples

unbind(foo/2).

The flexible predicate foo/2 in the current module is unbound, from this moment it is an undefined

predicate.

Errors

instantiation_error

PI is insufficiently instantiated.

type_error(atom, Mod)

Mod predicate specification, extracted from PredInd is not an atom.

existence_error(module, Mod)

Mod extracted from PredInd is not a module name.

type_error(predicate_indicator, PS)

PS predicate specification, extracted from PredInd is not of the form Name / Arity.

type_error(atom, Name)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Name is not an atom.

type_error(integer, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity is not an integer.

domain_error(not_less_than_zero, Arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity < 0.

representation_error(max_arity)

PS predicate specification, extracted from PredInd is of the form Name / Arity, where Arity > 255.

existence_error(procedure, PS)

PS is the predicate specification extracted from PredInd and this functor does not belong to a procedure.

permission_error(unbind, non_flex, PS)

PS is the predicate specification extracted from PredInd and it is the functor of a non-flexible procedure.

Built-in predicates

116

21. File selection and control

This chapter describes the input/output predicates. The basic notions used here are explained in chapter 3.

current_input/1

current_output/1

Description

current_input(Stream)

Unifies Stream with the current input stream.

current_output(Stream)

Unifies Stream with the current output stream.

Template and modes

current_input(?stream) [ISO]

current_output(?stream) [ISO]

Examples

current_input(X).

X is unified with the stream identifier of the current input stream.

Errors

domain_error(stream, Stream)

Stream is neither a variable nor a stream term.

set_input/1

Description

set_input(S_or_a)

Sets the stream associated with stream or alias S_or_a to be the current input stream.

set_input/1 cannot fail. Either it succeeds or it raises an exception, in which case the current input stream

remains unchanged.

Template and modes

set_input(@stream_or_alias) [ISO]

Examples

set_input(user_input).

The current input stream will be the terminal.

Errors

instantiation_error

S_or_a is a variable.

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

Chapter 21: File selection and control

117

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

set_output/1

Description

set_output(S_or_a)

Sets the stream associated with stream or alias S_or_a to be the current output stream.

set_output/1 cannot fail. Either it succeeds or it raises an exception, in which case the current output stream

remains unchanged.

Template and modes

set_output(@stream_or_alias) [ISO]

Examples

set_output(user_output).

The current output stream will be the terminal.

Errors

instantiation_error

S_or_a is a variable.

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

open/3

Description

open(Source_sink, Mode, Stream)

Opens the source/sink Source_sink for input or output as indicated by I/O mode Mode. Unifies Stream with a

term representing the stream. Stream must be an uninstantiated variable.

This predicate is equivalent with a call of open/4 with same first three arguments, and an empty list supplied

as fourth argument.

Template and modes

open(@source_sink, @io_mode, -stream) [ISO]

Examples

open(csp_file, read, S).

Opens the text file 'csp_file' for reading, and unifies S with a value which will uniquely identify the

stream until it is closed.

Errors

instantiation_error

Source_sink is a variable.

instantiation_error

Mode is a variable.

Built-in predicates

118

domain_error(source_sink, Source_sink)

Source_sink is not a variable and does not represent a valid source/sink.

type_error(atom, Mode)

Mode is not a variable and not an atom.

type_error(variable, Stream)

Stream is not an unbound variable.

domain_error(io_mode, Mode)

The atom Mode is not a valid I/O mode.

existence_error(source_sink, Source_sink)

The file or other source/sink specified by Source_sink does not exist. ErrInfo-Other will be a number, returned as

error code by the operating system.

permission_error(open, source_sink, Source_sink)

The file or other source/sink specified by Source_sink cannot be opened because the operating system does not allow it.

ErrInfo-Other will be a number, returned as error code by the operating system.

open/4

Description

open(Source_sink, Mode, Stream, Options)

Opens the source/sink Source_sink for input or output, as indicated by I/O mode Mode (see section 3.2) and

the list of I/O options Options (see section 3.8). Unifies Stream with a term representing the stream. Stream

must be an uninstantiated variable.

Template and modes

open(@source_sink, @io_mode, -stream, @io_options) [ISO]

Examples

open(csp_file, read, S, [alias(fi)]).

Opens the text file 'csp_file' for reading, and unifies S with a value which will uniquely identify the

stream until it is closed. The atom fi is associated as alias to this stream.

open(memo, write, S, [alias(mem),stream_type(memory)]).

Opens a memory stream, associates the atom mem as alias to it, and unifies S with its stream identifier.

Errors

instantiation_error

Source_sink is a variable.

instantiation_error

Mode is a variable.

instantiation_error

Options is a partial list, or an element of the Options list is a variable.

domain_error(source_sink, Source_sink)

Source_sink is not a variable and does not represent a valid source/sink.

type_error(atom, Mode)

Mode is not a variable and not an atom.

type_error(variable, Stream)

Stream is not an unbound variable.

type_error(list, Options)

Options is neither a list nor a partial list.

domain_error(io_mode, Mode)

The atom Mode is not a valid I/O mode.

domain_error(stream_option, Option)

Option, an element of the Options list, is neither a variable nor a valid stream option.

Chapter 21: File selection and control

119

domain_error(stream_option, Option)

Option, an element of the Options list, is a valid stream option but contradicts to a previous argument. ErrInfo-Other

will be the atom: contradiction.

existence_error(source_sink, Source_sink)

The file or other source/sink specified by Source_sink does not exist. ErrInfo-Other will be a number, returned as

error code by the operating system.

permission_error(open, source_sink, Source_sink)

The file or other source/sink specified by Source_sink cannot be opened because the operating system does not allow it.

ErrInfo-Other will be a number, returned as error code by the operating system.

reopen/3

Description

reopen(S_or_a, Mode, Options)

First closes the stream associated with stream or alias S_or_a. Then opens the same stream for input or output

as indicated by I/O mode Mode and the list of I/O options Options. The original alias (if any) cannot be

changed and it remains valid even if the Options list does not contain such an option.

Template and modes

reopen(@stream_or_alias, @io_mode, @io_options)

Examples

reopen(memo, write, []).

If memo is an alias of a stream, closes that stream. Then opens the source/sink associated with this stream for

writing.

Errors

instantiation_error

S_or_a is a variable.

instantiation_error

Mode is a variable.

instantiation_error

Options is a partial list, or an element of the Options list is a variable.

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

type_error(atom, Mode)

Mode is not a variable and not an atom.

type_error(list, Options)

Options is neither a list nor a partial list.

domain_error(io_mode, Mode)

The atom Mode is not a valid I/O mode.

domain_error(stream_option, Option)

Option, an element of the Options list, is neither a variable nor a valid stream option.

domain_error(stream_option, Option)

Option, an element of the Options list, is a valid stream option but contradicts to a previous argument. If there was an

alias associated with the stream previously, a new alias as a stream option leads to this exception. ErrInfo-Other will be

the atom: contradiction.

permission_error(open, source_sink, Source_sink)

The file or other source/sink specified by S_or_a cannot be opened because the operating system does not allow it.

ErrInfo-Other will be a number, returned as error code by the operating system.

Built-in predicates

120

close/1

close/2

Description

close(S_or_a)

Is equivalent with

close(S_or_a, []).

close(S_or_a, Options)

Closes the stream associated with stream or alias S_or_a if it is open. The default behavior of this predicate

may be modified by specifying a non-empty list of close options in the Options parameter.

Valid close options are:

force(true)

force(false)

force

The force option is equivalent with force(true). The default is force(false). If force(false) option is given (the

empty option list means this case), and if an error occurs, the stream is not closed and an exception is raised. If

force(true) option is given then any resource error or system error occurring in the closing of the stream is

ignored. Instead of raising an exception in these cases, close forces the stream to be closed and then succeeds.

If the closed stream was the current input or output stream the standard stream becomes the current one.

close/2 cannot fail.

Template and modes

close(@stream_or_alias) [ISO]

close(@stream_or_alias, @close_options) [ISO]

Examples

close(fi).

Closes the file associated with alias fi.

close(fi,[force(true)]).

Closes the file associated with alias fi. It will succeed even if the file cannot be closed because of lack of

sufficient space on the disk.

Errors

instantiation_error

S_or_a is a variable.

instantiation_error

Options is a partial list, or an element of the Options list is a variable.

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

type_error(list, Options)

Options is neither a list nor a partial list.

domain_error(stream_option, Option)

Option, an element of the Options list, is neither a variable nor a valid close option.

resource_error(disk_space)

The close operation cannot be completed because of lack of sufficient space on an external storage device such as a disk to

hold the entire sink.

system_error

The close operation cannot be completed for some reason other than the above. ErrInfo-Other will be a number,

returned as error code by the operating system.

Chapter 21: File selection and control

121

flush_output/0

flush_output/1

Description

flush_output

Equivalent with

current_output(Stream), flush_output(Stream).

flush_output(S_or_a)

Any output that is currently buffered by the system for the stream associated with stream or alias S_or_a is

sent to that stream.

Template and modes

flush_output [ISO]

flush_output(@stream_or_alias) [ISO]

Examples

flush_output(user_output).

All buffered output for the user_output stream is written out.

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

flush_input/0

flush_input/1

Description

flush_input

Equivalent with

current_input(Stream), flush_input(Stream)

flush_input(S_or_a)

Any input that is currently buffered by the system for the stream associated with stream or alias S_or_a is

deleted, and the buffer is emptied.

In case of files this operation cannot be very useful, since the user has no access to the input buffer. However,

in case of the user_input - the terminal - it can be helpful to remove the characters typed in the last line.

Template and modes

flush_input

flush_input(@stream_or_alias)

Examples

flush_input(user_input).

All buffered input for the user_input stream is cleared.

Built-in predicates

122

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

stream_property/2

Description

stream_property(Stream, Property)

Succeeds if the Stream has stream property Property. This predicate is resatisfiable. On backtracking,

succeeds with all unifiable Stream, Property pairs.

If the stream properties are modified after a stream_property/2 call, the modifications are not effective from

the point of view of the stream_property/2 call. The predicate behaves as if the property set was frozen in the

moment of the call.

Template and modes

stream_property(?stream, ?stream_property) [ISO]

Examples

stream_property(S, file_name(F)).

If S is instantiated, return the name of the file to which it is connected. Otherwise, backtrack through all

streams connected to files and return the file names in F and the stream identifiers in S.

stream_property(S, output).

If S is instantiated, check whether output is permitted on this stream. Otherwise, backtrack through all streams

currently open for output and unify S with their stream identifier.

Errors

domain_error(stream, Stream)

Stream is not a variable and it is not a valid stream-term.

domain_error(stream_property, Property)

Property is not a variable and it is not a valid stream-property.

at_end_of_stream/0

at_end_of_stream/1

Description

at_end_of_stream

Is equivalent with

current_input(Stream), at_end_of_stream(Stream)

at_end_of_stream(S_or_a)

Is true if the stream associated with stream or alias S_or_a is positioned at its end or is past_end_of_stream.

This predicate succeeds when all the characters in the current input stream or in stream S_or_a have been read

by input routines (such as get_code, get_char or read), or when stream_position has been used to move

Chapter 21: File selection and control

123

directly to the end of the stream. The predicate at_end_of_stream/[0,1] still succeeds when called in the

past_end_of_stream state.

Template and modes

at_end_of_stream [ISO]

at_end_of_stream(@stream_or_alias) [ISO]

Examples

at_end_of_stream(fi).

Succeeds if the position for the next read operation in the stream with alias fi is at the end of stream.

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

set_stream_position/2

Description

set_stream_position(S_or_a,Position)

Changes the position of the stream associated with stream or alias S_or_a to Position. Position have

previously been returned as a position/1 stream property of the stream by the predicate stream_property/2.

Template and modes

set_stream_position(@stream_or_alias, @stream_position)

 [ISO]

Examples

stream_property(S,position(P)), get_char(CH),

 set_stream_position(S,P).

Reads a character from the stream identified by stream identifier S, and then repositions the input stream to its

original position.

Errors

instantiation_error

S_or_a is a variable

instantiation_error

Position is a variable.

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

domain_error(stream_position, Position)

Position is neither a variable and nor a valid representation of a stream position.

permission_error(reposition, stream, S_or_a)

Re-positioning is not allowed on this stream.

Built-in predicates

124

get_char/1

get_char/2

Description

get_char(Char)

Is equivalent with

current_input(Stream), get_char(Stream)

get_char(S_or_a, Char)

Reads a character from the text stream associated with S_or_a and then succeeds if Char unifies with the atom

consisting of that character. Note that the next character is always removed from the source stream, even if the

predicate fails.

Template and modes

get_char(?in_character) [ISO]

get_char(@stream_or_alias, ?in_character) [ISO]

Examples

get_char(Stream, Char).

The contents of Stream are

'qwerty' ...

Char is unified with ' (the atom containing just a single quote) and Stream is left as

qwerty' ...

get_char(Stream, p).

The contents of Stream are

qwerty ...

Fails and Stream is left as

werty ...

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

type_error(in_character, Char)

Char is not a variable and it is not an in_character (a one-char atom or the atom end_of_file).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of get_char/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

get_char/1 the value of S_or_a is the current input stream.)

Chapter 21: File selection and control

125

peek_char/1

peek_char/2

Description

peek_char(Char)

Is equivalent with

current_input(Stream), peek_char(Stream)

peek_char(S_or_a, Char)

Unifies the next char to be read from the text stream associated with S_or_a with Char. The next character is

not removed from the source stream.

Template and modes

peek_char(?in_character) [ISO]

peek_char(@stream_or_alias, ?in_character) [ISO]

Examples

peek_char(Stream, Char).

The contents of Stream are

'qwerty' ...

Char is unified with ' (the atom containing just a single quote) and Stream is left unchanged:

'qwerty' ...

get_char(Stream, p).

The contents of Stream are

qwerty ...

Fails and Stream is left unchanged

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

type_error(in_character, Char)

Char is not a variable and it is not an in_character (a one-char atom or the atom end_of_file).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of peek_char/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

peek_char/1 the value of S_or_a is the current input stream.)

put_char/1

put_char/2

Description

put_char(Char)

Built-in predicates

126

Is equivalent with

current_output(Stream), put_char(Stream,Char)

put_char(S_or_a, Char)

Outputs the character Char to the text stream associated with stream or alias S_or_a.

Template and modes

put_char(@character) [ISO]

put_char(@stream_or_alias, @character) [ISO]

Examples

put_char(Stream,t).

If the stream indicated by Stream contains

... qwer

Succeeds and leaves that stream

... qwert

Errors

instantiation_error

S_or_a is a variable

instantiation_error

Char is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

type_error(character, Char)

Char is not a variable and it is not a character (a one-char atom).

permission_error(output, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of put_char/1 the value of S_or_a is the current input stream.)

nl/0

nl/1

Description

nl

Is equivalent with

current_output(Stream), nl(Stream)

nl(S_or_a)

Causes the current line on the text stream associated with stream or alias S_or_a to be terminated. (It is

equivalent with put_char(S_or_a, ‘\n')).

Template and modes

nl [ISO]

nl(@stream_or_alias) [ISO]

Examples

nl(st), put_char(st, a).

If the stream indicated by st contains

... qwer

Chapter 21: File selection and control

127

the goal-sequence above succeeds and leaves that stream:

... qwer

a

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

permission_error(output, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of nl/0 the value of S_or_a is the current input stream.)

get_code/1

get_code/2

Description

get_code(Code)

Is equivalent with

current_input(Stream), get_code(Stream, Code)

get_code(S_or_a, Code)

Succeeds if Code unifies with the character code corresponding to the next character read from text stream

S_or_a. Note that the next character is always removed from the source stream, even if the predicate fails.

Template and modes

get_code(?in_character_code) [ISO]

get_code(@stream_or_alias, ?in_character_code) [ISO]

Examples

get_code(Stream, Code).

The contents of Stream are

'qwerty' ...

Code is unified with character code of ', the number 39, and Stream is left as

qwerty' ...

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

type_error(integer, Code)

Code is not a variable and it is not an integer.

representation_error(in_character_code)

Code is an integer but not an in_character_code (a number between -1 and 255).

Built-in predicates

128

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of get_code/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

get_code/1 the value of S_or_a is the current input stream.)

peek_code/1

peek_code/2

Description

peek_code(Code)

Is equivalent with

current_input(Stream), peek_code(Stream, Code)

peek_code(S_or_a, Code)

Succeeds if Code unifies with the character code corresponding to the next character to be read from the text

stream S_or_a. The stream remains unchanged.

Template and modes

peek_code(?in_character_code) [ISO]

peek_code(@stream_or_alias, ?in_character_code) [ISO]

Examples

peek_code(Stream, Code), peek_code(Stream,Code).

The contents of Stream are

'qwerty' ...

Code is unified with character code of ', the number 39, and Stream is left unchanged.

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

type_error(integer, Code)

Code is not a variable and it is not an integer.

representation_error(in_character_code)

Code is an integer but not an in_character_code (a number between -1 and 255).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of peek_code/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

peek_code/1 the value of S_or_a is the current input stream.)

Chapter 21: File selection and control

129

put_code/1

put_code/2

Description

put_code(Code)

Is equivalent with

current_output(Stream), put_code(Stream, Code)

put_code(S_or_a, Code)

Outputs the character of code Code to the text stream associated with stream or alias S_or_a.

Template and modes

put_code(@character_code) [ISO]

put_code(@stream_or_alias, @character_code) [ISO]

Examples

put_code(Str, 65).

If the stream indicated by Str contains

... qwer

succeeds and leaves that stream

... qwerA

Errors

instantiation_error

S_or_a is a variable

instantiation_error

Code is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

type_error(integer, Code)

Code is neither a variable nor an integer.

permission_error(output, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of put_code/1 the value of S_or_a is the current input stream.)

representation_error(character_code)

Code is an integer but it is not a character_code (a number between 0 and 255).

get_line/1

get_line/2

Description

get_line(Line)

Is equivalent with

current_input(Stream), get_line(Stream, Line)

get_line(S_or_a, Line)

Built-in predicates

130

Reads characters from text stream S_or_a until the next line-end ('\n') character. The atom formed from these

characters is unified with Line. The line-end character will not be the part of the atom, but it will be read in.

Template and modes

get_line(?atom)

get_line(@stream_or_alias, ?atom)

Examples

get_line(Stream, Line).

The contents of Stream are

 qwerty

abcd ...

Line is unified with atom qwerty, and Stream is left as

abcd ...

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

type_error(atom, Line)

Line is not a variable and it is not an atom.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of get_line/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

get_line/1 the value of S_or_a is the current input stream.)

representation_error(max_atom)

The length of line to be read is greater then the maximum length of atoms.

get_atom/2

get_atom/3

Description

get_atom(Code, Atom)

Is equivalent with

current_input(Stream), get_atom(Stream, Code, Atom)

get_atom(S_or_a, Code, Atom)

Reads characters from text stream S_or_a until the nearest character that has code Code. The atom formed

from these characters is unified with Atom. The terminating Code character will not be the part of the atom,

but it will be read in (consumed). Code can also be given as the special atom end_of_file.

Template and modes

get_atom(@character_code, ?atom)

get_atom(@stream_or_alias, @character_code, ?atom)

Chapter 21: File selection and control

131

Examples

get_atom(Stream, 101, X).

Reads characters until the nearest e character. If the contents of Stream are

 qwerty

X is unified with atom qw, and Stream is left as

 rty

Errors

instantiation_error

S_or_a is a variable

instantiation_error

Code is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

type_error(atom, Atom)

Atom is not a variable and it is not an atom.

type_error(integer, Code)

Code is not a variable and it is not an in_character (a one-character atom or the atom end_of_file).

representation_error(in_character_code)

Code is an integer but not an in_character_code (a number between -1 and 255).

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of get_atom/2 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

get_atom/2 the value of S_or_a is the current input stream.)

representation_error(max_atom)

The length of the character sequence to be read is greater then the maximum length of atoms.

get_byte/1

get_byte/2

Description

get_byte(Byte)

Is equivalent with

current_input(Stream), get_byte(Stream, Byte)

get_byte(S_or_a, Byte)

Succeeds if Byte unifies with the next byte read from binary stream S_or_a. Note that the next byte is always

removed from the source stream, even if the predicate fails.

Template and modes

get_byte(?in_byte) [ISO]

get_byte(@stream_or_alias, ?in_byte) [ISO]

Examples

get_byte(Stream, Byte).

The contents of Stream are

39 40 41 42 43 44 45 46 ...

Built-in predicates

132

Byte is unified with byte 39, and Stream is left as

40 41 42 43 44 45 46 ...

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

type_error(in_byte, Byte)

Byte is not an in_byte (an integer between -1 and 255).

permission_error(input, text_stream, S_or_a)

S_or_a represents a text stream. (In case of get_byte/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

get_byte/1 the value of S_or_a is the current input stream.)

peek_byte/1

peek_byte/2

Description

peek_byte(Byte)

Is equivalent with

current_input(Stream), peek_byte(Stream, Byte)

peek_byte(S_or_a, Byte)

Succeeds if Byte unifies with the byte corresponding to the next byte to be read from the binary stream S_or_a.

The stream remains unchanged.

Template and modes

peek_byte(?in_byte) [ISO]

peek_byte(@stream_or_alias, ?in_byte) [ISO]

Examples

peek_byte(Stream, Byte), peek_byte(Stream,Byte).

The contents of Stream are

39 40 41 42 43 44 45 46 ...

Byte is unified with the number 39, and Stream is left unchanged.

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

Chapter 21: File selection and control

133

type_error(in_byte, Byte)

Byte is not an in_byte (an integer between -1 and 255).

permission_error(input, text_stream, S_or_a)

S_or_a represents a text stream. (In case of peek_byte/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

peek_byte/1 the value of S_or_a is the current input stream.)

put_byte/1

put_byte/2

Description

put_byte(Byte)

Is equivalent with

current_output(Stream), put_byte(Stream, Byte)

put_byte(S_or_a, Byte)

Outputs the byte Byte to the binary stream associated with stream or alias S_or_a.

Template and modes

put_byte(@character_byte) [ISO]

put_byte(@stream_or_alias, @byte) [ISO]

Examples

put_byte(Str, 65).

If the stream indicated by Str contains

... 60 61 62 63 64

succeeds and leaves that stream

... 60 61 62 63 64 65

Errors

instantiation_error

S_or_a is a variable

instantiation_error

Byte is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

type_error(byte, Byte)

Byte is not a byte (an integer between 0 and 255).

permission_error(output, text_stream, S_or_a)

S_or_a represents a text stream. (In case of put_byte/1 the value of S_or_a is the current input stream.)

Built-in predicates

134

read_term/2

read_term/3

Description

read_term(Term, Options)

Is equivalent with

current_input(Stream), read_term(Stream, Term, Options)

read_term(S_or_a, Term, Options)

Inputs a sequence of tokens from the text stream associated with stream or alias S_or_a until an end token has

been read. The options in Options list affect the reading (see section 3.10). It is a syntax error if end of stream

is reached before an end token is found. The sequence of tokens is then parsed as a Prolog term, which is then

unified with Term. The end token is removed from the stream.

Template and modes

read_term(?term, +read_options_list) [ISO]

read_term(@stream_or_alias, ?term, +read_options_list)

 [ISO]

Examples

read_term(Str, X, [variable_names(VNames)]).

The stream Str contains the following characters:

qwerty(Abcd) + Abcd . efgh ...

X is unified with term qwerty(_1) + _1, and VNames is unified with the term [_1 = 'Abcd']. The

stream is left as

 efgh ...

Errors

instantiation_error

S_or_a is a variable

instantiation_error

Options is a partial list, or an element of the Options list is a variable.

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of read_term/2 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

read_term/2 the value of S_or_a is the current input stream.)

type_error(list, Options)

Options is neither a list nor a partial list.

domain_error(read_option, Option)

Option, an element of the Options list, is neither a variable nor a valid read option.

syntax_error(err_atom)

One or more tokens were read, but they could not be parsed as a term using the current set of operator definitions.

Chapter 21: File selection and control

135

read/1

read/2

Description

read(Term)

Is equivalent with

current_input(Stream), read(Stream, Term)

read(S_or_a, Term)

Inputs a sequence of tokens from the text stream associated with stream or alias S_or_a until an end token has

been read. It is a syntax error if end of stream is reached before an end token is found. The sequence of tokens

is then parsed as a Prolog term, which is then unified with Term. The end token is removed from the stream.

This predicate is equivalent with calling read_term/2 or read_term/3 with an empty read option list.

Template and modes

read(?term) [ISO]

read(@stream_or_alias, ?term) [ISO]

Examples

read(Str, X).

The stream Str contains the following characters:

qwerty(abcd) + abcd . efgh ...

X is unified with term qwerty(abcd) + abcd. The stream is left as

 efgh ...

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of read/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of read/1

the value of S_or_a is the current input stream.)

syntax_error(err_atom)

One or more tokens were read, but they could not be parsed as a term using the current set of operator definitions.

tread_term/2

tread_term/3

Description

tread_term(Term, Options)

Is equivalent with

current_input(Stream), tread_term(Stream, Term, Options)

Built-in predicates

136

tread_term(S_or_a, Term, Options)

Inputs a sequence of tokens from the text stream associated with stream or alias S_or_a as long as they form a

valid Prolog expression. This term is then unified with Term. The options in Options list affect the reading

(see section 3.10).

Template and modes

tread_term(?term, +read_options_list)

tread_term(@stream_or_alias, ?term, +read_options_list)

Examples

tread_term(Str, X, [vars(Vars)]).

The stream Str contains the following characters:

qwerty(Abcd) + Abcd efgh ...

X is unified with term qwerty(_1) + _1, and Vars is unified with the term [_1]. The stream is left as

 efgh ...

(Supposing that the atom efgh is not an infix nor a postfix operator.)

Errors

instantiation_error

S_or_a is a variable

instantiation_error

Options is a partial list, or an element of the Options list is a variable.

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of tread_term/2 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

tread_term/2 the value of S_or_a is the current input stream.)

type_error(list, Options)

Options is neither a list nor a partial list.

domain_error(read_option, Option)

Option, an element of the Options list, is neither a variable nor a valid read option.

syntax_error(err_atom)

One or more tokens were read, but they could not be parsed as a term using the current set of operator definitions.

tread/1

tread/2

Description

tread(Term)

Is equivalent with

current_input(Stream), tread_term(Stream, Term)

tread(S_or_a, Term)

Inputs a sequence of tokens from the text stream associated with stream or alias S_or_a as long as they form a

valid Prolog expression. This term is then unified with Term.

Chapter 21: File selection and control

137

Template and modes

tread(?term)

tread(+stream_or_alias, ?term)

Examples

tread(Str, X).

The stream Str contains the following characters:

qwerty(abcd-efgh) ijkl ...

X is unified with term qwerty(abcd-efgh), The stream is left as

 ijkl ...

(Supposing that the atom ijkl is not an infix nor a postfix operator.)

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of tread/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of tread/1

the value of S_or_a is the current input stream.)

syntax_error(err_atom)

The characters that were read in could not be parsed as a term using the current set of operator definitions.

tread_token/1

tread_token/2

Description

tread_token(Token)

Equivalent with

current_input(Stream), tread_token(Stream, Token)

tread_token(S_or_a,Token)

Reads the next token from the text stream associated with S_or_a, and unifies it with Token.

Template and modes

tread_token(?constant)

tread_token(@stream_or_alias,?constant)

Examples

tread_token(Str, X).

The stream Str contains the following characters:

qwerty(abcd-efgh) ijkl ...

X is unified with atom qwerty, The stream is left as

(abcd-efgh) ijkl ...

Built-in predicates

138

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(input, stream, S_or_a)

S_or_a is not open for input (it is an output stream).

permission_error(input, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of tread_token/1 the value of S_or_a is the current input stream.)

permission_error(input, past_end_of_stream, S_or_a)

The stream S_or_a is in state past_end_of_stream and eof_action(error) applies to this stream. (In case of

tread_token/1 the value of S_or_a is the current input stream.)

write_term/2

write_term/3

Description

write_term(Term, Options)

Is equivalent with

current_output(Stream), write_term(Stream, Term, Options)

write_term(S_or_a, Term, Options)

Outputs Term to the text stream associated with stream or alias S_or_a in a form that is defined by the write

options list Options.

Template and modes

write_term(@term, @write_options_list) [ISO]

write_term(@stream_or_alias, @term, @write_options_list)

 [ISO]

Examples

write_term(Str, [1,2,3], []).

outputs the characters

[1,2,3]

to the stream associated with Str.

write_term(Str, [1,2,3], [ignore_ops(true)]).

outputs the characters

.(1,.(2,.(3,[])))

to the stream associated with Str.

write_term(Str, '1<2', [quoted(true)]).

outputs the characters

'1<2'

to the stream associated with Str.

write_term(Str, '$VAR'(1)+'$VAR'(26),[numbervars(true)]).

outputs the characters

B+A1

to the stream associated with Str.

Chapter 21: File selection and control

139

Notes

The output appearance of a variable (unless numbervars(true) option is standing) is a sequence of decimal

digit and underscore characters beginning with an underscore. The digits depend on the location of the

variable in the memory, which may change during a garbage collection. Therefore, the same variable in

subsequent write operations can appear in different forms.

Errors

instantiation_error

S_or_a is a variable

instantiation_error

Options is a partial list, or an element of the Options list is a variable.

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

permission_error(output, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of write_term/2 the value of S_or_a is the current input stream.)

type_error(list, Options)

Options is neither a list nor a partial list.

domain_error(write_option, Option)

Option, an element of the Options list, is neither a variable nor a valid read option.

write/1

write/2

Description

write(Term)

Is equivalent with

current_output(Stream), write(Stream, Term)

write(S_or_a, Term)

Outputs Term to the text stream associated with stream or alias S_or_a applying the

[numbervars(true)]

write options list.

Template and modes

write(@term) [ISO]

write(@stream_or_alias,@term) [ISO]

Examples

write(Str, [1,2,3]).

outputs the characters

[1,2,3]

to the stream associated with Str.

write(Str, '$VAR'(1)+'$VAR'(26)).

outputs the characters

B+A1

to the stream associated with Str.

Built-in predicates

140

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

permission_error(output, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of write/1 the value of S_or_a is the current input stream.)

writeq/1

writeq/2

Description

writeq(Term)

Is equivalent with

current_output(Stream), writeq(Stream, Term)

writeq(S_or_a, Term)

Outputs Term to the text stream associated with stream or alias S_or_a applying the

[quoted(true), numbervars(true)]

write options list.

Template and modes

writeq(@term) [ISO]

writeq(@stream_or_alias,@term) [ISO]

Examples

writeq(Str, foo+bar).

outputs the characters

foo+bar

to the stream associated with Str.

writeq(Str, 'foo bar').

outputs the characters

'foo bar'

to the stream associated with Str.

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

permission_error(output, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of writeq/1 the value of S_or_a is the current input stream.)

Chapter 21: File selection and control

141

write_canonical/1

write_canonical/2

Description

write_canonical(Term)

Is equivalent with

current_output(Stream), write_canonical(Stream, Term)

write_canonical(S_or_a, Term)

Outputs Term to the text stream associated with stream or alias S_or_a applying the

[ignore_ops(true), numbervars(true)]

write options list.

Template and modes

write_canonical(@term) [ISO]

write_canonical(@stream_or_alias,@term) [ISO]

Examples

write_canonical(Str, foo+bar).

outputs the characters

+(foo,bar)

to the stream associated with Str.

write_canonical(Str, [1,2,3]).

outputs the characters

.(1,.(2,.(3,[])))

to the stream associated with Str.

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

permission_error(output, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of write_canonical/1 the value of S_or_a is the current input stream.)

format/2

format/3

Description

format(Ctrl_String,Arglist)

Is equivalent with

current_output(Str), format(Str, Ctrl_String, Arglist)

format(Stream_or_alias,Ctrl_String,Arglist)

Built-in predicates

142

Description

The predicate writes out Arglist to the text stream associated with Stream_or_alias according to the format

specification contained in the atom Ctrl_String. This predicate is non-standard, but it is modeled after, and

essentially compatible with, Quintus Prolog (and with SICStus Prolog). It is a Prolog interface to the POSIX

standard printf function family in C.

Arglist is a list of items to be written. If there is only one item it may be given as a term. But if this only

element is itself a list then this simplification cannot be used. If there are no items then Arglist should be an

empty list.

The default action on a format character in Ctrl_String is to print it. The character ~ (tilde) introduces a

control sequence. A control sequence has the general form ~KC. The character C determines the type of the

control sequence. K is an optional integer parameter. If K is a * (asterisk) character, it means that the next

argument in Arglist should be used as the numeric parameter of the control sequence. Not all control

sequences accept the optional numeric parameter.

There are two types of control sequences: those that take an item (argument) from Arglist and those that do

not. The length of Arglist must exactly match the number of argument-taking control sequences in

Ctrl_String. The control sequences available are listed below.

The following control sequences take an argument from Arglist:

~a

The argument should be an atom; it is written out without quoting.

~Kd

The argument should be an integer; it is written out. If K is omitted, or it is zero, no decimal

point is written. If K is positive, it indicates that a decimal point should be written inside the

number and there should be K digits after the decimal point.

~KD

Same as ~Kd except that a comma will separate groups of three digits to the left of the decimal

point.

~Kf

The argument should be a float number; it is converted to decimal notation in the style ddd.ddd

(d stands for a digit) where K is the number of digits after the decimal point. The default value

for K is 6. If K is zero, no decimal point is written (the value will have the form of an integer,

but it may be outside the valid integer range).

~Ke

~KE

The argument should be a float; it is written out in exponential - scientific - form. It is converted

in the style d.dddEdd where there is one digit before the decimal point and K is the number of

digits after it. The default for K is 6. The first version writes e before the exponent, the second

one writes E. K = 0 is interpreted as K = 1 (to enforce correct Prolog syntax).

~Kg

~KG

The argument should be a float. It is printed either in decimal or in exponential notation. The

style used depends on the value converted: exponential style will be used only if the exponent

resulting from the conversion is less than -4 or greater than K. If exponential style is used, the

exponent is introduced by e for the g format code and by E for the G code. K determines the

number of significant digits shown: the displayed value will be rounded at the K-th digit.

Non-significant zero digits after the decimal point are not shown, except the first one. An extra

zero is appended if otherwise the displayed number would end with a decimal point. K = 0 is

interpreted as K = 1 (to enforce correct Prolog syntax).

~Kc

The argument should be a number. It is interpreted as a character code. The character is printed

out K times. The default for K is 1.

~Kr

The argument should be a number. K is interpreted as a radix. K should be between 2 and 36.

The argument is written using letters a..z for digits larger than 9.

Chapter 21: File selection and control

143

~KR

The same as ~Kr, except that the letters A..Z are used for digits larger than 9.

~Ks

The argument should be a list of character codes. Exactly K characters will be written out. The

default for K is the length of the list. If K is greater than the length of the list, padding space

characters are appended.

~i

The argument is ignored.

~w

The argument is written out as by write/1.

~k

The argument is written out as by write_canonical/1.

~q

The argument is written out as by writeq/1.

The remaining control sequences take no argument form Arglist (except for K, if it is specified as ‘*’).

~~

Writes out the ~ (tilde) character.

~Kn

Writes out K newline characters. K defaults to 1.

~N

Writes out a newline if the current position is not already at the beginning of a line.

The following control sequences set column boundaries and specify padding. A column is defined as the

available space between two consecutive column boundaries on the same line. A boundary is initially assumed

at line position 0. The specifications only apply to the line currently being written.

When a column boundary is set (‘~|’ or ‘~+’) and there are fewer characters written in the column just defined

than its specified width, the remaining space is divided equally among the pad sequences (‘~t’) in the column.

If there are no pad sequences, the column is space padded at the end.

If ‘~|’ or ‘~+’ specifies a position preceding the current position, the boundary is set at the current position.

~K|

Sets a column boundary at line position K. K defaults to the current position.

~K+

Sets a column boundary at K positions past the previous column boundary. K defaults to 8.

~Kt

Specifies padding in a column. K is the fill character. The default for K is 32 (space). Any

padding (‘~t’) after the last column boundary on a line is ignored.

Template and modes

format(+atom,@term)

format(@stream_or_alias,+atom,@term)

Examples

format(user_output,'Hello ~a~n',world).

Writes:

Hello world (...and a newline)

format(user_output,'Hello ~1d ~w.',[23,[world]]).

Writes:

Hello 2.3 [world].

format(user_output,'Hello~42tcruel~45t~|*world',[20]).

Writes:

Hello*****cruel-----world

Built-in predicates

144

Errors

instantiation_error

S_or_a is a variable

domain_error(stream_or_alias, S_or_a)

S_or_a is not a variable and it is not a valid representation of a stream or a stream alias.

existence_error(stream, S_or_a)

S_or_a is not associated with an open stream.

permission_error(output, stream, S_or_a)

S_or_a is not open for output (it is an input stream).

permission_error(output, binary_stream, S_or_a)

S_or_a represents a binary stream. (In case of format/2 the value of S_or_a is the current input stream.)

instantiation_error

Ctrl_String is a variable.

type_error(atom, Ctrl_String)

Ctrl_String is not an atom.

type_error(integer, Arg)

Argument Arg (an element of Arglist) should be an integer.

type_error(atom, Arg)

Argument Arg (an element of Arglist) should be an atom.

type_error(float, Arg)

Argument Arg (an element of Arglist) should be a float.

domain_error(not_less_than_zero, Arg, [])

Argument Arg (an element of Arglist) should be a positive integer.

existence_error(term, Arglist)

There are not enough arguments in the Arglist list.

existence_error(control, Arglist)

There are more arguments in the Arglist list then control sequences in Ctrl_String.

representation_error(max_format)

Internal buffer overflow.

representation_error(character_code)

The argument corresponding to a ‘~Ks’ control sequence is not a valid character code list.

evaluation_error(bad_format_item)

There is a syntactically incorrect control sequence (introduced by a tilde character) in Ctrl_String. Info_Oher shows

the position of the offending sequence within the format specification.

Chapter 22: Operator and bracket handling

145

22. Operator and bracket handling

These predicates change, or give information about, the current operator and bracket set.

The operator and bracket sets are global; that is, there are no different sets for individual modules or processes.

At the beginning of the execution only the predefined - built-in - operators and brackets are present in the

CS-Prolog runtime system. That means that the different operator and bracket declarations in source files (used

by the compiler) have no effect during runtime. The needed operators and brackets have to be created by op/3

or bracket/3 predicate.

op/3

Description

op(Priority, Op_specifier, Operator)

If Operator is an atom, then a new operator, named Operator, with specifier Op_specifier and priority

Priority will be added to the system (or an old one will be modified accordingly).

If Operator is a (flat) list then the processing described above is performed for each element, beginning from

the head. If an error occurs later, the result of the previous processing remains in effect.

If Priority equals 0, it means removing the property of Operator corresponding to Op_specifier. It is not

considered an error if Operator does not posses the specified property at the time of the call.

Operator cannot be the ’,’ (comma) atom (so the priority of the predefined comma operator cannot be

changed). An atom cannot have both infix and postfix operator specification at the same time.

There cannot be a left bracket and a prefix operator with the same name. There also cannot be a right bracket

and an infix or postfix operator with the same name.

Template and modes

op(@integer, @operator_specifier, @atom_or_atom_list) [ISO]

Examples

op(30, xfy, ++).

Succeeds, and from now ++ is a right associative infix operator with priority 30.

op(0, xfy, ++).

Succeeds, and from now ++ is not an infix operator.

Errors

instantiation_error

Priority is a variable.

instantiation_error

Op_specifier is a variable.

instantiation_error

Operator is a partial list, or Operator is a list containing a variable.

type_error(integer, Priority)

Priority is neither a variable nor an integer.

type_error(atom, Op_specifier)

Op_specifier is neither a variable nor an atom.

type_error(list,Operator)

Operator is neither a partial list nor an atom nor a list.

type_error(atom, Op)

Op is a member of the list Operator and is neither a variable nor an atom.

domain_error(operator_priority, Priority)

Priority is an integer outside of the range [0,1200].

Built-in predicates

146

domain_error(operator_specifier, Op_specifier)

Op_specifier is an atom that is not a valid operator specifier.

permission_error(modify, operator, ',')

Operator is the comma atom or a list containing the comma.

permission_error(create, operator, Operator)

Op_specifier is a specifier such that Operator would have an invalid set of specifiers.

current_op/3

Description

current_op(Priority, Op_specifier, Operator)

Succeeds if Operator is an operator with properties defined by specifier Op_specifier and precedence

Priority.

current_op/3 is resatisfiable. On backtracking, succeeds with all matching values.

The set of operators returned by a current_op/3 call reflects the state in the moment of the call (logical view).

Template and modes

current_op(?integer, ?operator_specifier, ?atom) [ISO]

Examples

current_op(P, xfy, OP).

Succeeds three times if the predefined operators have not been altered. It unifies

P with 1100, OP with ;

and then

P with 1050, OP with ->

and then

P with 1000, OP with ,

Errors

domain_error(operator_priority, Priority)

Priority is neither a variable nor an integer inside of the range [0,1200].

domain_error(operator_specifier, Op_specifier)

Op_specifier is neither a variable nor a valid operator specifier atom.

type_error(atom, Operator)

Operator is neither a variable nor an atom.

bracket/3

Description

bracket(Priority, Br_open, Br_close)

A new bracket with open atom Br_open, close atom Br_close and priority Priority will be added to the

system. The atom formed as the concatenation of Br_open and Br_close is called the name of the bracket.

If Priority equals 0, it requests the removal of the bracket property of the corresponding bracket defined earlier

(if any).

Priority value 1202 also has a special meaning: the bracket so defined will behave as an alternative set of

parentheses.

Br_open and Br_close must be different atoms, and neither of them can the empty string (’’).

The priority of the predefined curly brackets cannot be changed.

Chapter 22: Operator and bracket handling

147

It is an error if a new bracket definition is in conflict with an existing one, i.e., any one of Br_open, Br_close,

or the name of the bracket is already involved in a currently existing bracket definition.

There cannot be a left bracket and a prefix operator with the same name. There also cannot be a right bracket

and an infix or postfix operator with the same name.

These conflicts, however, are not signaled when deletion of a (non-existing) bracket is requested.

Template and modes

bracket(@integer, @atom, @atom)

Examples

bracket(300, <*, *>).

Succeeds, and from now a bracket with open atom <* and close atom *> can be used.

Errors

instantiation_error

Priority is a variable.

instantiation_error

Br_open is a variable.

instantiation_error

Br_close is a variable.

type_error(integer, Priority)

Priority is neither a variable nor an integer.

type_error(atom, Br_open)

Br_open is neither a variable nor an atom.

type_error(atom, Br_close)

Br_close is neither a variable nor an atom.

representation_error(max_atom)

The name of bracket (concatenation of Br_open and Br_close) cannot be represented because its size exceeds the limit

for atoms.

domain_error(bracket_component_name, Priority)

Br_open or Br_close is the empty string atom (’’).

domain_error(bracket_priority, Priority)

Priority is an integer outside of the range [0,1200] and is not the special value 1202.

consistency_error(identical_bracket_name_components, Br_open+Br_close)

Br_open and Br_close are identical (the same atom).

permission_error(modify, bracket, {})

An attempt to change the priority of the predefined curly brackets.

permission_error(create, bracket, Br_open+Br_close)

The requested bracket would be in conflict with a currently effective bracket definition (they have some common

component), or with an operator definition (either Br_open is a prefix operator, or Br_open is an infix or postfix

operator).

current_bracket/3

Description

current_bracket(Priority, Br_open, Br_close)

Succeeds if the arguments can be unified with the corresponding properties of a user bracket declaration

currently in effect.

current_bracket/3 is resatisfiable. On backtracking, succeeds with all matching values.

The set of brackets returned by a current_bracket/3 call reflects the state in the moment of the call (logical

view).

Note that beside user brackets there is the system defined curly bracket pair (almost the same as the fixed user

curly brackets, but using the non-quoted open-curly and close-curly tokens).

Built-in predicates

148

Template and modes

current_bracket(?integer, ?atom, ?atom)

Examples

current_bracket(P, <*, *>).

Succeeds if there is a bracket declaration in effect for these atoms.In this case P will be unified with the priority

of that bracket.

Errors

domain_error(bracket_priority, Priority)

Priority is neither a variable nor an integer inside of the range [0,1202].

type_error(atom, Br_open)

Br_open is neither a variable nor an atom.

type_error(atom, Br_close)

Br_close is neither a variable nor an atom.

Chapter 23: Atom processing

149

23. Atom processing

These predicates enable atoms to be processed as a sequence of characters or character codes. Facilities exist to

split and join atoms, and to convert a single character to and from the corresponding character code.

atom_length/2

Description

atom_length(Atom, Length)

Unifies Length with the number of characters in Atom.

Template and modes

atom_length(+atom, ?integer) [ISO]

Examples

atom_length('Hello world', N).

Succeeds and unifies N with 11.

atom_length('', N).

Succeeds and unifies N with 0.

Errors

instantiation_error

Atom is a variable.

type_error(atom, Atom)

Atom is neither a variable nor an atom.

type_error(integer, Length)

Length is neither a variable nor an integer.

domain_error(not_less_than_zero, Length)

Length is an integer that is less than zero.

atom_concat/3

Description

atom_concat(Atom_1, Atom_2, Atom_12)

Unifies Atom_12 with the concatenation of Atom_1 and Atom_2.

atom_concat/3 is resatisfiable, but only when Atom_12 is instantiated. On backtracking, successive values for

Atom_1 and Atom_2 are generated.

Template and modes

atom_concat(+atom, +atom, -atom) [ISO]

atom_concat(?atom, ?atom, +atom) [ISO]

Examples

atom_concat('Hello ', world, S).

Succeeds and unifies S with 'Hello world'.

atom_concat(T, world, helloworld).

Succeeds and unifies T with hello.

Built-in predicates

150

atom_concat(T1, T2, hello).

Succeeds and unifies T1 with the empty atom and T2 with hello. On backtracking, T1 becomes h and T2

becomes ello, etc.

Errors

instantiation_error

Atom12 is a variable and one of Atom1 and Atom2 is also a variable.

type_error(atom, Atom1)

Atom1 is not a variable and it is not an atom.

type_error(atom, Atom2)

Atom2 is not a variable and it is not an atom.

type_error(atom, Atom12)

Atom12 is not a variable and it is not an atom.

representation_error(max_atom)

Atom12 cannot be represented because its size exceeds the limit for atoms.

sub_atom/5

Description

sub_atom(Atom, Before, Length, After, Sub_atom)

If Atom can be broken into three pieces in such a way that the first piece is Before characters long, the second

piece is Length characters long, and the third piece is After characters long, then the second (middle) piece is

unified with Sub_atom.

sub_atom/5 is resatisfiable. On backtracking all possible values for Before, Length, After and Sub_atom are

generated.

Template and modes

sub_atom(+atom, ?integer, ?integer, ?atom) [ISO]

Examples

sub_atom('Hello world', 3, 2, _, S).

Succeeds and unifies S with lo.

sub_atom('Hello', _, 4, _, S).

Succeeds and unifies S with Hell. On backtracking, it succeeds once more unifying S with ello.

sub_atom(ab, Before, Length, After, Sub_atom).

Succeeds six times:

Before = 0, Length = 0, After = 2 Sub_atom = ''

Before = 0, Length = 1, After = 1 Sub_atom = a

Before = 0, Length = 2, After = 0 Sub_atom = ab

Before = 1, Length = 0, After = 1 Sub_atom = ''

Before = 1, Length = 1, After = 0 Sub_atom = b

Before = 2, Length = 0, After = 0 Sub_atom = ''

Errors

instantiation_error

Atom is a variable.

type_error(atom, Atom)

Atom is neither a variable nor an atom.

type_error(atom, Sub_atom)

Sub_atom is neither a variable nor an atom.

type_error(integer, Before)

Before is neither a variable nor an integer.

type_error(integer, Length)

Length is neither a variable nor an integer.

Chapter 23: Atom processing

151

type_error(integer, After)

After is neither a variable nor an integer.

domain_error(not_less_than_zero, Before)

Before is an integer that is less than zero.

domain_error(not_less_than_zero, Length)

Length is an integer that is less than zero.

domain_error(not_less_than_zero, After)

After is an integer that is less than zero.

atom_chars/2

Description

atom_chars(Atom, List)

Unifies List with a list whose elements are the characters of Atom, or unifies Atom with an atom whose

characters are the characters which are the elements of the list List.

Template and modes

atom_chars(+atom, ?character_list) [ISO]

atom_chars(-atom, +character_list) [ISO]

Examples

atom_chars('', L).

Succeeds and unifies L with [].

atom_chars(hello, L).

Succeeds and unifies L with [h,e,l,l,o].

atom_chars(Str, [w,o,r,l,d]).

Succeeds and unifies Str with world.

Errors

instantiation_error

Atom is a variable and Chars is a variable or a partial list or list containing a variable.

type_error(atom, Atom)

Atom is neither a variable nor an atom

type_error(list, Chars)

Chars is neither a partial nor a list.

type_error(character, Char)

Char, an element of the list Chars, is neither a variable nor a character (one-char atom).

representation_error(max_atom)

Atom cannot be represented because its size exceeds the limit for atoms.

atom_codes/2

Description

atom_codes(Atom, List)

Unifies List with a list whose elements are the character codes of the characters of Atom, or unifies Atom with

an atom whose characters have a character code equal to the elements of the list List.

Template and modes

atom_codes(+atom, ?character_code_list) [ISO]

atom_codes(-atom, +character_code_list) [ISO]

Built-in predicates

152

Examples

atom_codes('', L).

Succeeds and unifies L with [].

atom_codes(hello, L).

Succeeds and unifies L with [104,101,108,108,111].

atom_codes(Str, [119,111,114,108,100]).

Succeeds and unifies Str with world.

Errors

instantiation_error

Atom is a variable and Codes is a variable or a list containing a variable.

type_error(atom, Atom)

Atom is not an atom

type_error(list, Codes)

Codes is neither a partial list nor a list

type_error(integer, Code)

Code, an element of the list Codes, is neither a variable nor an integer.

representation_error(character_code)

Code, an element of the list Codes, is an integer but not a character code.

representation_error(max_atom)

Atom cannot be represented because its size exceeds the limit for atoms.

char_code/2

Description

char_code(Char, Code)

Unifies Code with character code for the character Char or unifies Char with an atom whose only character's

code is Code.

Template and modes

char_code(+character, ?character_code) [ISO]

char_code(-character, +character_code) [ISO]

Examples

char_code(a, Code).

Succeeds and unifies Code with 97.

char_code(Str, 0’c).

Succeeds and unifies Str with c.

Errors

instantiation_error

Both Char and Code are variables.

type_error(character, Char)

Char is neither a variable nor a character (one-char atom).

type_error(integer, Code)

Code is neither a variable nor an integer.

representation_error(character_code)

Code is an integer but not a character code.

Chapter 23: Atom processing

153

number_chars/2

Description

number_chars(Number, List)

Unifies List with a list whose elements are the characters that would be output if Number would be written out

to a sink by write_canonical/1 predicate, or unifies Number with a number which would be read from a

source containing characters which are the elements of the list List.

Template and modes

number_chars(+number, ?character_list) [ISO]

number_chars(-number, +character_list) [ISO]

Examples

number_chars(1997, L).

Succeeds and unifies L with [’1’,’9’,’9’,’7’].

atom_chars(N, [’2’,’0’,’0’,’0’]).

Succeeds and unifies N with 2000.

atom_chars(F, [’3’,’1’,’.’,’4’,’E’,’-’,’1’]).

Succeeds and unifies F with 3.14.

Errors

instantiation_error

Number is a variable and List is a variable, a partial list, or a list containing a variable.

type_error(number, Number)

Number is neither a variable nor a number

type_error(list, List)

List is neither a partial list nor a list.

type_error(character, Char)

Char, an element of the list List, is neither a variable nor a character.

syntax_error(SyntErr)

The system could not read a number from the characters of List.

number_codes/2

Description

number_codes(Number, List)

Unifies List with a list whose elements are the character codes that would be output if Number would be

written out to a sink by write_canonical/1 predicate, or unifies Number with a number which would be read

from a source containing characters whose codes are the elements of the list List.

Template and modes

number_codes(+number, ?character_codelist) [ISO]

number_codes(-number, +character_codelist) [ISO]

Examples

number_codes(1997, [49,57,57,55]).

Succeeds.

number_codes(2000.0, L).

Succeeds and unifies L with [50,48,48,48,46,48].

atom_codes(Str, [0’1,0’.,0’0]).

Succeeds and unifies Str with 1.0.

Built-in predicates

154

Errors

instantiation_error

Number is a variable and List is a variable, a partial list, or a list containing a variable.

type_error(number, Number)

Number is neither a variable nor a number

type_error(list, List)

List is neither a partial list nor a list.

type_error(integer, Code)

Code, an element of the list Codes, is neither a variable nor an integer.

representation_error(character_code)

Code, an element of the list Codes is an integer but not a character code.

syntax_error(SyntErr)

The system could not read a number from the character codes of List.

Chapter 24: Date and Time

155

24. Date and Time

These predicates enable the user to get information about the current date, time, and about the elapsed CPU

time. There is also some support for converting date and time representations and performing operations on

them.

CS–Prolog II uses three different representations for date and time. The simplest representation for short time

intervals is a non-negative Prolog integer expressing the length of the interval in hundredth of seconds. The

time-handling predicates concerned will return only values for intervals shorter than one day (8,640,000).

Some other predicates, for example set_timeout/1, accept only intervals shorter than half a day. Note that the

CSP–II integer range can accommodate intervals over 7 days expressed in this unit.

The second representation is a multi–component structure for expressing full (UTC) date and time values. The

structure is the following:

abs(YEAR,MONTH,DAY,HOUR,MIN,SEC,HUNDREDTH)

where the successive arguments are the year, month, day of month, hour, minute, second, and hundredths of

second components of the expressed date and time. YEAR = 1 corresponds to year 1 AD, YEAR = 0 —to year 1

BC (year 0 UTC), etc. MONTH numbers begin from 1 for January; DAY expresses the day of month number

(from 1).

The third representation is a — usually floating-point — number, expressing number of days. (The fractional

part of the value represents the corresponding fraction of a day, e.g., the value 0.5 is half a day, or 12 hours, or

4,320,000 hundredth seconds.) This representation is the best suited for calculations involving dates or time

intervals longer than one day. The precision of floating point numbers is sufficient for expressing intervals (or

absolute dates) as large as 32,000 years with a rounding error less then one hundredth second.

Time intervals can also be interpreted as time points if a base time is assumed. CSP-II uses the time point

midnight (0:0:0) UTC, January 1, year 2000 for this purpose. It is a good idea to maintain all time–point data

relative to this basis internally; local form should be used only in connection with user interfaces. CSP–II

predicates are adapted to this kind of usage. The epoch of this scale corresponds to Julian day number

2,451,544.5 (used in astronomy).

The reason behind shifting the origin by 2000 years with respect to UTC is that the resolution of floating point

date–time values is not uniform; it is best around value 0. In the sequel, when speaking of CSP-II time-point

values, we always assume this time coordinate system unless explicitly stated otherwise.

Note that calculations involving time–points can, in general, yield meaningful results only if the assumed time

coordinate system is linear (which excludes systems with daylight saving) and only if all time points are

expressed in the same coordinate system.

The (floating point) number–of–days and the (integer) hundredths–of–seconds representations can be

converted into each other by simply multiplying and dividing, respectively (the scaling constant is 8,640,000).

For example the following arithmetic expressions can be used:

HSECS is floor((ND - floor(ND)) * 8640000)

and

ND is HSECS * 8.64E6

CSP-II also provides predicates for converting values between the abs(…) structure representation (either

local or UTC) and the floating point representation interpreted as point in time with the base point indicated

above.

There are some limitations and peculiarities concerning these conversions. When converting dates to abs(…)

format, the result is always is normalized, i.e., the components of the structure are within in their natural range

(minutes, seconds between 0 and 59, hours between 0 and 23, months between 1 and 12, and days between 1

and the maximal day of that month). The inverse conversion, however, accepts unnormalized structures, too.

The structure is interpreted component-by-component, from major to minor order. Each component is handled

as a time interval relative to the time point designated by the previous part (or initially 0000-01-01 00:00:00

UTC). This treatment allows for simple arithmetic performed in different time units on the components of the

structure. The range of dates accepted by the conversion predicate is rather liberal: from -5,884,323-05-15 to

5,874,898-06-03 as absolute dates, and the corresponding range from -2,149,935,193.0 to 2,145,032,102.0 as

day numbers. For unnormalized input structures the range is somewhat narrower.

Built-in predicates

156

cpu_time/1

Description

cpu_time(Time)

Time must be a variable. The call unifies Time with the processor time consumed by the Prolog system from

its start. The time is measured in hundredths of seconds, and wraps around after 24 hours (at the value

8,640,000).

In a multiprocessor implementation this time is related to the specific processor on which it is asked.

Template and modes

cpu_time(-integer)

Examples

cpu_time(X), format('Used ~2d sec.~n',[X]).

Writes out the time used by the program in seconds.

Errors

type_error(variable, Time)

The Time argument is not a variable.

wall_clock_time/1

Description

wall_clock_time(Time)

Time must be a variable. The call unifies Time with the value of the wall clock timer of the Prolog system,

which is set to 0 when the program starts. The time is measured in hundredths of seconds, and wraps around

after 24 hours (at the value 8,640,000).

Template and modes

wall_clock_time(-integer)

Examples

wall_clock_time(X), format('The program has been running for ~2d

seconds.~n',[X]).

Writes out the time elapsed since the program started, in seconds.

Errors

type_error(variable, Time)

The Time argument is not a variable.

calendar_time/1

Description

calendar_time(NDaysDateTime)

NDaysDateTime must be a variable. The call unifies NDaysDateTime with the floating point number-of-days

time-point value corresponding to the current UTC time obtained from the operating system.

Template and modes

calendar_time(-float)

Chapter 24: Date and Time

157

Examples

calendar_time(CT), H is 24 *(CT - floor(CT)),

 Hour is floor(H), Min is floor((H - Hour) * 60),

 format('~NThe time is now ~dh:~2min (GMT)~n',[Hour, Min]).

Writes out the UTC time of the day .

Errors

type_error(variable, NDaysDateTime)

The NDaysDateTime argument is not a variable.

abs_time/1

Description

abs_time(StructDateTime)

Unifies SrtuctDateTime with a structure

abs(YEAR,MONTH,DAY,HOUR,MIN,SEC,HUNDREDTH)

where the successive arguments are the year, month, day, hour, minute, second, and hundredths of second

values of the current local date and time as perceived by the operating system.

Template and modes

abs_time(?term)

Examples

abs_time(abs(Y,M,D,_,_,_,_)), format('~d/~d/~d',[Y,M,D]).

Writes out the (local) date of execution.

abs_time(abs(_,0,_,_,_,_,_)), format('~d/~d/~d',[Y,M,D]).

Always fails because the predicate forms normalized structure components, where month number is between 1

and 12.

Errors

domain_error(datetime_struct, StuctDateTime)

StuctDateTime is neither a variable nor an abs/7 datetime term.

gmtime_conversion/2

localtime_conversion/2

Description

gmtime_conversion(NDaysDateTime, StuctDateTime)

localtime_conversion(NDaysDateTime, StuctDateTime)

Performs conversion of date–time values between the number–of–days representation interpreted as point of

time and the representation by the special structure

abs(YEAR,MONTH,DAY,HOUR,MIN,SEC,HUNDREDTH)

where the successive arguments are the year, month, day, hour, minute, second, and hundredths of second

values of the date and time. At least one of the arguments must be (fully) instantiated. If NDaysDateTime is

instantiated at the time of the call, then its value is converted to the structure representation and the result is

unified with StuctDateTime. Otherwise the reverse conversion is performed (always resulting in floating

point value). Note that in the latter case the abs(…) structure does not have to be normalized, i.e., values

outside the normal range (even negative values) are accepted in the individual fields (see the introduction to

this chapter).

Built-in predicates

158

The difference between the two predicates lies only in the interpretation of StuctDateTime.

gmtime_conversion/2 regards the fields of the structure as components of UTC date-time, while

localtime_conversion/2 uses the operating system’s current local time zone setting when the structure is

formed or interpreted (see also localtime_info/4 and time_zone/2).

Template and modes

gmtime_conversion(+number, ?struct)

gmtime_conversion(?number, +struct)

localtime_conversion(+number, ?struct)

localtime_conversion(?number, +struct)

Examples

gmtime_conversion(ND, abs(1998,4,25,12,0,0,0)),

 format('~7f',[ND]).

Writes out -615.5000000, the number of days between the base date–time point (midnight of January 1,

2000) and the specified date-time (noon of April 25, 1998).

gmtime_conversion(-615.5, abs(1997,_,_,_,_,_,_)).

Fails because the timepoint specified by the floating point value is in year 1998 (see the previous example), not

in 1997.

S = abs(1998,4,25,12,0,0,0), gmtime_conversion(GT, S),

 localtime_conversion(LT, S), Offs = truncate((GT - LT) * 86400),

 format(’ The local time is offset by ~d seconds wrt. GMT.’, [Offs]).

Writes out the signed difference, in seconds, between UTC and the local time being in effect on April 25, 1980.

Errors

instantiation_error

Both NDaysDateTime and StuctDateTime are variables.

type_error(number, NDaysDateTime)

NDaysDateTime is not a variable and not a number.

domain_error(datetime_struct, StuctDateTime)

NDaysDateTime is a variable, StuctDateTime is not a variable but it either is not an abs/7 datetime term or the

interpretation of its components results in a date outside the allowed range (for unnormalized components some

theoretically allowed values may also be rejected).

domain_error(datetime_float, NDaysDateTime)

NDaysDateTime is a number but the date represented by it is outside the allowed date range.

gmtime_info/3

Description

gmtime_info(NDaysDateTime, DayOfWeek, WeekOfYear)

Provides additional information, not included in the structure representation of dates, about the date specified

by time-point value NDaysDateTime interpreted as UTC date.

DayOfWeek is unified with the integer day of week code corresponding to that date. The day of week code is a

small integer between 0 and 6; Sunday is coded as 0, Monday – 1, etc.

WeekOfYear is unified with a value in the range [0, 53] expressing the number of week inside the year (the

first Monday in the year is the first day of week 1).

Template and modes

gmtime_info(+number, ?integer, ?integer)

Examples

gmtime_info(-615.5, 6, WN).

Succeeds because the timepoint corresponding to -615.5000000 (noon of April 25, 1998) was on a

Saturday; and unifies WN with 18, the number of that week within 1988.

Chapter 24: Date and Time

159

Errors

instantiation_error

NDaysDateTime is an uninstantiated variable.

type_error(number, NDaysDateTime)

NDaysDateTime is neither a number nor a variable.

type_error(integer, DayOfWeek)

DayOfWeek is neither a variable nor an integer value.

type_error(integer, WeekOfYear)

WeekOfYear is neither a variable nor an integer value.

domain_error(datetime_float, NDaysDateTime)

NDaysDateTime is a number but the date represented by it is outside the allowed date range.

localtime_info/4

Description

gmtime_info(NDaysDateTime, DayOfWeek, WeekOfYear, Daylight)

Provides additional information, not included in the structure representation of dates, about the date specified

by time-point value NDaysDateTime interpreted in the local time zone.

DayOfWeek is unified with the integer day of week code corresponding to that date. The day of week code is a

small integer between 0 and 6; Sunday is coded as 0, Monday – 1, etc.

WeekOfYear is unified with a value in the range [0, 53] expressing the number of week inside the year (the

first Monday in the year is the first day of week 1).

Daylight is unified with an indicator showing whether the alternate time zone (Daylight Saving Time) had

been used for interpreting the date. Daylight = 1 means that DST is used; Daylight = 0 means that DST is not

used because the specified time point does not fall inside that interval, and Daylight = -1 means that DST is

not used because the system has no information in its database about the time point in question.

Note that the range of time point values handled by CSP-II is much wider then the corresponding range usually

handled by the operating system. If the time-point specified falls outside the time interval accepted by the

operating system then the primary time zone is used for the interpretation and Daylight is unified with

-1.Otherwise the appropriate operating system service is used. The choice between the primary and the

alternate time zones is somewhat arbitrary around change time (because of the discontinuity and the

non-functional nature of the mapping). The ambiguity is resolved by the operating system by using specific

rules.

Template and modes

localtime_info(+number, ?integer, ?integer, ?integer)

Examples

gmtime_info(-615.5, 6, WN).

Succeeds because the timepoint corresponding to -615.5000000 (noon of April 25, 1998) was on a

Saturday; and unifies WN with 18, the number of that week within 1988.

Errors

instantiation_error

NDaysDateTime is an uninstantiated variable.

type_error(number, NDaysDateTime)

NDaysDateTime is neither a number nor a variable.

type_error(integer, DayOfWeek)

DayOfWeek is neither a variable nor an integer value.

type_error(integer, WeekOfYear)

WeekOfYear is neither a variable nor an integer value.

type_error(integer, Daylight)

Daylight is neither a variable nor an integer value.

Built-in predicates

160

domain_error(datetime_float, NDaysDateTime)

NDaysDateTime is a number but the date represented by it is outside the allowed date range.

time_zone/2

Description

time_zone(Primary, Alternate)

The call unifies Primary with the description of the primary time zone currently used by the operating system

for expressing local time. The description is a list of the form

[Name, Offset]

where Name is the symbolic name of the primary time zone as known by the operating system (as Prolog

atom), and Offset is the time difference in number-of-days representation to be added to local times to obtain

UTC time (this value being an interval is insensitive to the shift of origin).

If the operating system is currently set up to use an alternate time zone (for daylight saving correction) then

Alternate is unified with the description of that alternate time zone in the same form as for Primary.

Otherwise Alternate is unified with the empty list (nil atom, ’[]’).

Note that the call does not give any indication about which time zone is in effect at the current time.

The details about time zones can be found in the operating system manuals.

Template and modes

time_zone(-term, -term)

Examples

time_zone(_, [_, _]).

Succeds if the operating system is currently aware of the existence of an alternate (daylight saving) time zone.

time_zone([Zone, Offs], _]), calendar_time(CT),

 LT is CT - Offs, H is 24 *(LT - floor(LT)),

 Hour is floor(H), Min is floor((H - Hour) * 60),

 format('~NLocal time is now ~dh:~dmin (~q)~n',[Hour, Min, Zone]).

Writes out the local time of the day assuming that the primary time zone is in effect.

Errors

type_error(list, Primary)

The Primary argument is neither a list nor a variable.

type_error(list, Alternate)

The Alternate argument is neither a list nor a variable.

Chapter 24: Date and Time

161

localtime_atom/3

Description

localtime_atom(NDaysDateTime, Format, DisplayString)

Unifies DisplayString with an atom composed of the string representation of the local date-time value

corresponding to the point-of-time specified by NDaysDateTime. The formatting of this string is controlled by

Format (as specified for the POSIX C function strftime). The Format string consists of zero or more

conversion specifiers and ordinary characters. All ordinary characters are copied unchanged into the result.

Each conversion specifier is replaced by appropriate characters derived from the specified date value according

to the following list:

%a the locale’s abbreviated weekday name.

%A the locale’s full weekday name.

%b the locale’s abbreviated month name.

%b the locale’s full month name.

%c the locale’s appropriate date and time representation.

%d day of the month as a decimal number (1-31).

%H hour (24-hour clock) as a decimal number (00-23).

%I hour (12-hour clock) as a decimal number (00-11).

%j day of the year as a decimal number (001-366).

%m month as a decimal number (01-12).

%M minute as a decimal number (00-59).

%p the locale’s equivalent of AM/PM designations associated with

12-hour clock.

%S second as a decimal number (00-61).

%U the week number of the year (the first Sunday as the first day of

week 1) as a decimal number (00-53).

%w the weekday as a decimal number [0 (Sunday)-6).

%W the week number of the year (the first Monday as the first day of

week 1) as a decimal number (00-53).

%x the locale’s appropriate date representation.

%X the locale’s appropriate time representation.

%y the year without century as a decimal number (00-99).

%y the year with century as a decimal number.

%Z the time zone name or abbreviation, or by no characters if no time

zone is determinable.

%% the percent sign character (’%’).

Template and modes

localtime_atom(+number, +atom, ?atom)

Examples

calendar_time(CT),

 localtime_atom(DS, ’%A, %B %d, %y - %I:%M %p (%Z)’, DS), write(DS), nl.

Writes out something like Saturday, April 25, 1998 - 02:17 PM (MET DS), if the locale is

set to US English and the time zone is set to Middle European Time (DS indicates that Daylight Saving is in

effect at that time).

Errors

instantiation_error

NDaysDateTime or Format is a variable.

type_error(number, NDaysDateTime)

NDaysDateTime is neither a number nor a variable.

type_error(atom, Format)

Format is not neither an atom nor a variable.

type_error(atom, DisplayString)

DisplayString is neither an atom nor a variable.

domain_error(datetime_float, NDaysDateTime)

NDaysDateTime is a number but the date represented by it is outside the allowed date range. If ErrInfo-Other is the

atom cannot_format_date, then the year number in the result is outside the range 0000 - 9999, otherwise the general

conversion range is involved (see the introduction to this chapter).

Built-in predicates

162

25. Prolog flags

A Prolog flag is an atom, which is associated with a value. Most of flags are defined by the CS-Prolog system

and cannot be changed. These flags describe several values, properties that are characteristic for CS-Prolog.

Some of flags are modifiable by the user; these alter the behavior of the CS-Prolog runtime system.

The following flags are present in CS-Prolog.

The main properties of the integer numbers:

bounded

The atom true if the integers are always in the closed interval [min_integer..max_integer],

otherwise the atom false.

max_integer

The largest integer number.

min_integer

The smallest integer number.

integer_rounding_function

The atoms down or toward_zero.

The main properties of the float numbers:

float_radix

The radix of float numbers.

float_precision

The number of digits in the significand.

float_min_exponent

The smallest exponent.

float_max_exponent

The largest exponent.

float_denorm

The atom true if denormalized numbers are included, otherwise the atom false.

float_max

The largest float number.

float_min_with_full_precision

The smallest positive float number which can be represented with full precision

float_min

The smallest positive float number.

float_epsilon

The maximum relative error in float values.

The main properties of Prolog terms:

max_arity

The maximum arity allowed in compound terms.

General information about the runtime system:

platform

A system dependent atom describing the host machine, e.g. os2, unix, transputer etc.

version

An atom representing the version number of the runtime system e.g. '1.1'.

number_of_processors

An integer, on monoprocessor systems it is always 1.

Modifiable Prolog flags that alter the CS-Prolog runtime system:

float_range_checking_function

One of the following atoms: denormalize, underflow_exception_after_rounding,

underflow_to_zero_after_rounding. This flag influences arithmetic evaluation and reading

terms from source streams.

Chapter 25: Prolog flags

163

unknown

One of the following three atoms: error, fail, and warning. If an undefined predicate is called

then the action of CS-Prolog depends on the value of this flag. The default is error.

double_quotes

One of the following three atoms: codes, chars, and atom. Double quoted tokens will be read as

a character code list, character list or quoted token, respectively, depending on the value of this

prolog flag. The default is codes.

garbage_collection

One of the atoms on or off. If set to off, garbage collection is not performed. The default is on.

time_slice_length

An integer, the time slice length is measured in hundredth of seconds. The default is 200 (two

seconds).

discard_mttp

(discard mail to terminated processes) One of the atoms on or off. If set to on, events and

interrupts routed to an already terminated process will be silently discarded. If set to off, the

situation will be treated as overrun. See also generate_event and cause_interrupt. The default

is off.

Modification of Prolog flags in multiprocessor environments can be costly, because the flags are global data to

be known everywhere.

There are some modifiable Prolog flags that have no effect on the runtime system; they are reserved for future

use:

char_conversion

One of the atoms on or off.

debug

One of the atoms on or off.

set_prolog_flag/2

Description

set_prolog_flag(Flag, Value)

If Flag is a Prolog flag and Value is a value within the range of values for Flag, then associates the value

Value with the flag Flag.

Template and modes

set_prolog_flag(@flag, @term) [ISO]

Examples

set_prolog_flag(undefined_predicate, fail).

Succeeds, associating the value fail with flag undefined_predicate.

Errors

instantiation_error

Flag is a variable or Value is a variable.

type_error(atom, Flag)

Flag is not a variable and not an atom.

domain_error(prolog_flag, Flag)

Flag is not a prolog flag.

domain_error(flag_value, Flag+Value)

Value is not a valid value for Flag.

permission_error(modify,flag, Flag)

Value is appropriate for Flag but Flag is not modifiable.

Built-in predicates

164

get_prolog_flag/2

Description

get_prolog_flag(Flag, Value)

If Flag is a Prolog flag then unifies Value with the value currently associated with Flag.

Template and modes

get_prolog_flag(@flag, ?term)

Examples

get_prolog_flag(undefined_predicate, X).

Succeeds, unifying X with the value fail, error, or warning depending on the value of the flag

undefined_predicate.

Errors

instantiation_error

Flag is a variable.

type_error(atom, Flag)

Flag is neither a variable nor an atom.

domain_error(prolog_flag, Flag)

Flag is an atom but it is not a prolog flag.

domain_error(flag_value, Flag+Value)

Value is neither a variable nor a valid value for Flag.

current_prolog_flag/2

Description

current_prolog_flag(Flag, Value)

Generates all F and V pairs that are Prolog flags and their associated values, and unifies Flag with F and

Value with V.

current_prolog_flag/2 is resatisfiable. On backtrack it unifies all F, V pairs with Flag and Value. The used

set of F, V values is frozen in the moment of the call. Therefore, if between two succeedings of the predicate, a

flag is modified, this modification does not appear in output values.

Template and modes

current_prolog_flag(?flag, ?term) [ISO]

Examples

current_prolog_flag(X,on), write(X), nl, fail.

Writes out all Prolog flag names that have the value on.

Errors

type_error(atom, Flag)

Flag is neither a variable nor an atom.

domain_error(prolog_flag, Flag)

Flag is an atom but it is not a prolog flag.

Chapter 26: Control predicates

165

26. Control predicates

These predicates provide additional facilities for affecting the control flow during execution. (see also Control

constructs, section 1.2.3)

true/0

fail/0

Description

true

Succeeds

fail

Fails

Template and modes

true [ISO]

fail [ISO]

Errors

None

call/1

Description

call(Term)

Invokes (meta-calls) the term Term. If Term has a module prefix, the call is interpreted in the specified

module, otherwise in the current module.

Template and modes

call(+callable_term) [ISO]

Examples

call(write('Hello')).

Writes out Hello.

Errors

instantiation_error

Term, its module prefix part or its call part is a variable.

type_error(callable, Term)

Term is neither a variable nor a callable term.

type_error(atom, Mod)

Mod extracted from Term is not an atom.

existence_error(module, Mod)

Mod extracted from Term is not a module name.

existence_error(procedure, PredInd)

PredInd is the functor of call and there is no predicate defined for this functor.

Built-in predicates

166

call_anywhere/1

Description

call_anywhere(Term)

Looks for the first module where the invocation (metacall) of the term Term is valid, and calls it there. Term

should not contain a module prefix.

Template and modes

call_anywhere(+callable_term)

Examples

call_anywhere(my_pred).

Looks for a module where My_pred/0 predicate is defined and visible from the current module and calls the

first such procedure found.

Errors

instantiation_error(call_anywhere(Term), 1, [])

Term is a variable.

type_error(callable, Term)

Term is neither a variable nor a callable term.

existence_error(procedure, Func)

No matching procedure could be found for Term in any module. Func is the functor of Call.

\+ /1

not/1

Description

\+ Term

not(Term)

These two predicates perform the same task: invoke Term as a goal and succeed only if Term fails. The

predicates implement negation by failure rather than true negation. They are not resatisfiable. If Term has a

module prefix, the call is interpreted in the specified module, otherwise in the current module.

Template and modes

\+(+callable_term) [ISO]

not(+callable_term)

\+ is a predefined prefix operator.

Examples

\+ true.

Fails

not(4 = 5).

Succeeds

Errors

instantiation_error

Term, or its module prefix part, or its call part is a variable.

type_error(callable, Term)

Term is neither a variable nor a callable term.

type_error(atom, Mod)

Mod extracted from Term is not an atom.

Chapter 26: Control predicates

167

existence_error(module, Mod)

Mod extracted from Term is not a module name.

existence_error(procedure, PredInd)

PredInd is the predicate indicator extracted from Term and there is no predicate defined for this functor.

once/1

Description

once(Term)

Succeeds if Term succeeds. once/1 behaves as call/1, but is not resatisfiable. If Term has a module prefix, the

call is interpreted in the specified module, otherwise in the current module.

Template and modes

once(+callable_term) [ISO]

Examples

once(true).

Succeeds (the same as true/0).

once(repeat).

Succeeds, but only once.

Errors

instantiation_error

Term, its module prefix part or its call part is a variable.

type_error(callable, Term)

Term is neither a variable nor a callable term.

type_error(atom, Mod)

Mod extracted from Term is not an atom.

existence_error(module, Mod)

Mod extracted from Term is not a module name.

existence_error(procedure, PredInd)

PredInd is the predicate indicator extracted from Term and there is no predicate defined for this functor.

repeat/0

Description

repeat

Always succeeds, it is resatisfiable indefinitely forever on backtracking. (Obviously a cut can change this.)

Template and modes

repeat [ISO]

Examples

repeat, write('hello '), fail.

Writes

hello hello hello hello hello ...

infinitly.

Errors

None

Built-in predicates

168

halt/0

halt/1

Description

halt

Exits from the Prolog, returns to the operation system that invoked it.

halt(Retcode)

Exits from the Prolog, returns to the operation system that invoked it, passing the value of Retcode as a

message.

Template and modes

halt [ISO]

halt(@integer) [ISO]

Examples

halt(-1).

Terminates the CS-Prolog program setting the return code to -1.

Errors

instantiation_error

Integer is a variable.

type_error(integer, Integer)

Integer is neither a variable nor an integer.

garbage_collection/0

Description

garbage_collection

Invokes explicitly the garbage collection procedure of the Prolog system.

Template and modes

garbage_collection

Errors

None

Chapter 27: Exception handling

169

27. Exception handling

The concept of exception handling is described in details in chapter 5.

catch/3

Description

catch(Goal, Catcher, Recovery)

Invokes Goal in a protected way. If an error is signaled during the execution of the Goal, the control returns to

the catch/3 predicate. Catcher is unified with the error term and if the unification succeeds then the Recovery

call is executed. If the unification fails then the exception cannot be handled here, and it is passed to the next

protection level.

Template and modes

catch(+callable_term, ?term, +callable_term) [ISO]

Examples

catch(Goal, Y, true).

This call protects the Goal call from every error. If during the evaluation of Goal an exception is raised, the

execution will continue with successful termination of the catch/3 call.

Errors

instantiation_error

Recovery, its module prefix part, or its call part is a variable.

type_error(callable, Recovery)

Recovery is not a variable and not callable.

type_error(atom, Mod)

Mod extracted from Recovery is not an atom.

existence_error(module, Mod)

Mod extracted from Recovery is not a module name.

existence_error(procedure, PredInd)

PredInd is the predicate indicator extracted from Recovery and there is no predicate defined for this functor.

protected/3

Description

protected(Goal, Handler, Term)

Executes Goal and if during the execution an exception happens, the system will call the Handler/5 predicate

supplying it with five arguments as explained in section 4.6. If the handler succeeds then a substitution goal

will be called instead of the call that caused the error or one of its ancestors. If the handler fails then the

exception cannot be handled here, and it is passed to the next protection level.

Handler can contain a module prefix.

Template and modes

protected(+callable_term, +module_prefixed_atom, @term)

Examples

See section 4.8.

Built-in predicates

170

Errors

instantiation_error

Handler or its module prefix is a variable.

type_error(atom, H)

H is the remaining of Handler after removing the optional module prefix and it is neither a variable nor an atom.

type_error(module, Mod)

Mod extracted from Handler is not an atom.

existence_error(module, Mod)

Mod extracted from Handler is not a module name.

existence_error(procedure, H/5)

H/5 predicate indicator does not belong to a user-defined predicate, where H is the remaining of Handler after removing

the optional module prefix.

throw/1

signal/1

Description

throw(Term)

signal(Term)

These two predicates perform the same task. They raise an exception, for which (a systematically renamed

copy of) Term will be the error term. This exception can be handled in the same way as the system exceptions.

The additional error info term will be the default one ([0, 0])

Template and modes

throw(?term) [ISO]

signal(?term)

Examples

catch(throw(apple(3)), apple(X), write(X)).

Succeeds writing out the number 3.

Errors

None

signal/2

Description

signal(Term, Term2)

The predicate raises an exception, Term will be the error term and Term2 the additional error info. This

exception can be handled in the same way as the system exceptions.

Template and modes

signal(?term,?term)

Examples

protected(signal(apple(3), cherry(4)), handler, 0).

The predicate handler/5 will be called with the arguments of the protected call.

Errors

None

Chapter 28: Solution collecting

171

28. Solution collecting

When there are many solutions to a (sub)problem, and when those solutions are required to be collected

together, this can be achieved by repeatedly backtracking and gradually building up a list of the solutions. The

following built-in predicates are provided to automate this process.

setof/3

Description

setof(Term, Goal, Set)

Set is unified with the list of all different instances of Term such that Goal succeeds. (These instances can be

regarded as solutions of Goal.) The uninstantiated variables appearing in Term should not appear anywhere

else in the clause except within the term Goal. The argument Term itself is used only as a template. It is

possible for the collected instances to contain variables, but in this case the list Set will only provide an

imperfect representation of what is in reality an infinite set.

If there are uninstantiated variables in Goal which do not also appear in Term (called free variables), then a

call to this built-in predicate may backtrack generating alternative values for Set corresponding to different

instantiations of the free variables of Goal. Two instantiations are different if they are not variants of each

other, i.e. no renaming of variables can make them literally identical.

Variables occurring in Goal will not be treated as free if they are explicitly bound within Goal by an existential

quantifier. An existential quantification is written:

Y ^ Q

meaning "there exists a Y such that Q is true", where Y is some Prolog variable or, more generally, a Prolog

term containing variables. Those variables of Q are quantified by this expression which also appear in Y. Q

itself also may be an existentially quantified goal expression, but the ^ operator is interpreted as existential

quantifier only as long as it is the outermost (main) functor of the expression.

If there are no solutions of Goal, then the predicate fails. Set is never unified with the empty list.

The list Set is sorted in the standard order for terms and duplicate items are removed.

Template and modes

setof(@term, +callable_term, ?list) [ISO]

Examples

Suppose there are the following facts in the program:

parent(kate, mary).

parent(chris, mary).

parent(steve, emeric).

setof(X, parent(X,Parent), L).

Unifies L with [chris, kate] and Parent with mary. Later, after backtracking, unifies L with

[steve] and Parent with emeric.

setof(X, Parent^parent(X,Parent), L).

Unifies L with [chris, kate, steve].

setof(p(X,Parent), parent(X,Parent), L).

Unifies L with [p(chris,mary), p(kate,mary), p(steve,emeric)].

Errors

instantiation_error

Goal, its module prefix part, or its call part is a variable.

type_error(list, Set)

Set is neither a partial list nor a list.

Built-in predicates

172

type_error(callable, Term)

Goal is neither a variable nor a callable term.

type_error(atom, Mod)

Mod extracted from Goal is not an atom.

existence_error(module, Mod)

Mod extracted from Goal is not a module name.

existence_error(procedure, PredInd)

PredInd is the predicate indicator extracted from Goal and there is no predicate defined for this functor.

bagof/3

Description

bagof(Term, Goal, Bag)

The operation of this predicate is the same as of setof/3 except that the list (or alternative lists) unified with

Bag will not be ordered, and may contain duplicates.

Template and modes

bagof(@term, +callable_term, ?list) [ISO]

Examples

Suppose there are the following facts in the program:

parent(kate, mary).

parent(chris, mary).

parent(steve, emeric).

bagof(X, parent(X,Parent), L).

Unifies L with [kate, chris] and Parent with mary. Later, after backtracking, unifies L with [steve]

and Parent with emeric.

bagof(X, Parent^parent(X,Parent), L).

Unifies L with [kate, chris, steve].

bagof(p(X,Parent), parent(X,Parent), L).

Unifies L with [p(kate,mary), p(chris,mary), p(steve,emeric)].

Errors

instantiation_error

Goal, its module prefix part, or its call part is a variable.

type_error(list, Bag)

Bag is neither a partial list nor a list.

type_error(callable, Term)

Goal is neither a variable nor a callable term.

type_error(atom, Mod)

Mod extracted from Goal is not an atom.

existence_error(module, Mod)

Mod extracted from Goal is not a module name.

existence_error(procedure, PredInd)

PredInd is the predicate indicator extracted from Goal and there is no predicate defined for this functor.

findall/3

Description

findall(Term, Goal, List)

Chapter 28: Solution collecting

173

List is unified with the list of all instances of Term in all proofs of Goal found by Prolog. The order of the list

corresponds to the order in which the proofs are found. The list may be empty and all variables in Goal are

taken as existentially quantified. This means that each invocation of findall/3 succeeds exactly once, and that

no variables in Goal get bound (see setof/3).

Template and modes

findall(@term, @callable_term, ?list) [ISO]

Examples

Suppose there are the following facts in the program:

parent(kate, mary).

parent(chris, mary).

parent(sly, emeric).

findall(p(X,Y), parent(X,Y), L).

Collects all terms of form p(X,Y) for which the goal parent(X,Y) is true, so unifies L with list

[p(kate,mary), p(chris,mary), p(sly,emeric)].

Errors

instantiation_error

Goal, its module prefix part, or its call part is a variable.

type_error(list, List)

List is neither a partial list nor a list.

type_error(callable, Term)

Goal is neither a variable nor a callable term.

type_error(atom, Mod)

Mod extracted from Goal is not an atom.

existence_error(module, Mod)

Mod extracted from Goal is not a module name.

existence_error(procedure, PredInd)

PredInd is the predicate indicator extracted from Goal and there is no predicate defined for this functor.

Built-in predicates

174

29. Parallel programming built-in predicates

The following table lists all the involved built-in predicates. None of them is available in both the prelude and

the working phase.

prelude phase

new/[2,3]

new_rt/[5,6]

kill/1

start_processes/0

working phase

open_channel_for_send/[1,2]

open_channel_for_receive/[1,2]

close_channel/1

send/2

test_send/[1,2]

receive/[2,3,4]

test_receive/[1,2]

deschedule_process/0

test_process/[1,2]

test_channel/2

process_list/1

channel_list/1

get_event/[1,2]

generate_event/[1,2]

cause_interrupt/2

All parallel-programming built-in predicates are non-backtrackable, i.e. the effect of them is not undone if the

Prolog program performs backtrack over them.

The descriptions of the parallel-programming built-in predicates will refer for some common syntactical

entities. They are defined bellow.

The testing predicates test_channel/2, test_send/2 and test_process/2 return some information about the

global state of the system. One cannot fully rely on the answer because interrupts can change the state of some

other processes, some external (from the requester’s point of view) event changes the situation etc.

29.1 System-wide unique names

The names of the virtual processors, processes, channels and events are global for the whole CS-Prolog system.

They are identified by system-wide unique names. These names are known everywhere in the program and any

references to them denote the same entity. A system-wide unique name is an arbitrary Prolog term with two

restrictions:

it can not be a list

it can not contain unbound variables

In the description of the template and mode sections if one of the above system-wide unique name is required

then the following abbreviations will be used:

virproc for virtual processor name

process for process name

channel for channel name

event for event name

Note that Cs-Prolog provides some predefined identifiers for virtual processor names. They serve for

identifying the physical processors under virtual processor names. They have the following form:

processor(N)

where N is an integer denoting the serial number of a physical processor. The serial numbers start at 1.

Anywhere the virtual processor names can be used the above names do as well. The scheduler accepts them as

virtual processor identifiers, but handles them as direct references to physical processors. In the multi-

processor implementations of the Cs-Prolog system the assignment of the serial numbers to physical processor

is defined in the Installation Guide of Cs-Prolog II.

Chapter 29: Parallel programming built-in predicates

175

29.2 Process goal

The creation of the CS-Prolog processes may require the determination of one or two executable goals The

process goal can be any callable Prolog term. Note that if the goal contains unbound variables and if during its

execution any of them is unified then the unification does not exceed the scope of the process.

In the description of the template and mode sections if process goal is required then the following abbreviation

will be used:

callable_term for process goal

29.3 Communication data

This definition covers three similar notions: the message, the event data and the interrupt data. The

communication data can be an arbitrary Prolog term with a single restriction:

it must not be a single unbound variable

In the description of the template and mode sections if one of the above communication data is required then

the following abbreviations will be used:

message for message

data for event and interrupt data

29.4 Channel specifier

Some built-in predicates operating on channels can accept more than one channel at a time. In the description

of these built-in predicates the channel specifier is used.

The channel specifier may be one of the following three things:

a channel name (as defined above)

a non-empty Prolog list containing names of channels

an unbound variable

In the description of the template and mode sections if channel specifier is required then the following

abbreviation will be used:

chanspec for channel specifier

29.5 The deadlock signal

If during the execution of the program a global deadlock situation occurs then the CS-Prolog scheduler signals

the following error in the main process:

system_error(Current_call,[deadlock])

where Current_call is the name of the predicate which is currently executed. Note that in this case only the

main process is revitalized, in order to provide the program a last chance to perform some closing and error

displaying operations (or to break the deadlock by some well-chosen action).

If the program has any chance to fall into deadlock then the user should take care of the correct handling of

this error, otherwise this error will cancel the execution of the whole CS-Prolog program.

29.6 Error handling in real time processes

A memory resource error occurring when an event or interrupt is processed by the scheduler might cause the

irrecoverable loss of that event or interrupt even if an exception handler tries to deal with the situation.

Built-in predicates

176

new/2

new/3

Description

new(Process_name, Process_goal)

new(Process_name, Process_goal, Processor_name)

Process_name and Processor_name are system-wide unique names. Process_goal should be a process goal.

The new/[2,3] predicate creates a new process with Process_name as its name and Process_goal as its goal.

The optional Processor_name serves for identifying the virtual processor to which the created process will be

delegated. If the third argument is omitted then the target processor is undetermined and the CS-Prolog

scheduler determines freely the target of the process. Note that the created process will start the execution of its

goal only in the working phase, which begins with the invocation of the start_processes/0 built-in predicate by

the main process.

Template and modes

new(+process, +callable_term)

new(+process, +callable_term, +virproc)

Examples

new(my_new_process, goal_of_my_process).

A new process is created with the name my_new_process and in the working phase it will execute the

goal_of_my_process predicate.

new(my_process(1), my_process_goal(1), same_processor),

new(my_process(2), my_process_goal(2), same_processor).

Two new processes are created for the same processor. Their goals differ only in the argument of the goal.

Errors

permission_error(parallel, process, 0)

The new/[2,3] built-in predicate has been called in the working phase

instantiation_error

The name of the process is a variable or contains a variable

domain_error(unique_name, Process_name)

The name of the process is not a valid unique name.

instantiation_error

The name of the virtual processor is a variable or contains a variable

domain_error(unique_name, Processor_name)

The name of the processor is not a valid unique name.

permission_error(create, process, Process_name)

A process with the same name has been already created.

new_rt/5

new_rt/6

Description

new_rt(Process_name, Event_handling_goal, Init_goal,

 Event_list, Periodicity)

new_rt(Process_name, Event_handling_goal, Init_goal,

 Event_list, Periodicity, Processor_name)

Chapter 29: Parallel programming built-in predicates

177

Process_name and Processor_name are system-wide unique names. Event_handling_goal and Init_goal

should be process goals. The Event_list should be either an empty list or a list of system-wide unique names.

The Periodicity should be one of the fixed terms detailed later.

The new_rt/[5,6] predicate creates a new real time process with Process_name as its name.

The initialization of the process is done by the execution of Init_goal when the real-time process becomes alive

in the working phase. In normal cases this goal should succeed. If the execution of the Init_goal fails then the

process will terminate (as failed) without the cyclic event-handling behavior being even started.

The incoming events are handled in the Event_handling_goal. When an event relevant to this real-time

process occurs, this goal will be executed. It is the user's task to determine which event triggered the current

execution of the real-time process and select the appropriate handler routine. The actual event can be inquired

by the get_event/[1,2] built-in predicate. The Event_handling_goal should succeed unless the user wants the

process to terminate. If this goal fails then the system terminates the execution of the process (indicating

success). After termination of a real time process the events dedicated to it will be orphaned, i.e. the occurrence

of such an event will cause the termination of the whole application due to missing handler.

The Event_list and the Periodicity arguments determine together the set of events for which the real-time

process is triggered. The Event_list contains the event terms which can be triggered explicitly either by a

process using the generate_event/[1,2] built-in predicate or by the environment of the CS-Prolog system using

the foreign language interface.

The same event name must not be defined for more than one process. On the other hand, any process can

generate any defined event.

The Periodicity argument determines which kind of implicitly generated timer event is to trigger the process.

It can have one of the following three forms:

period(Time)

idle(Time)

no_event

Here Time is an integer describing a time interval in hundredth of second.

If period(Time) term is given then the real-time process will get periodically a timer event in every moment

when the Time interval has been elapsed.

If idle(Time) term is given then the real-time process will get periodically a timer event in every moment when

the Time interval has been elapsed and no other explicit event has occurred.

If no_event is given then no timer event will be generated at all.

The optional Processor_name serves for identifying the virtual processor to which the created process will be

delegated. If the sixth argument is omitted then the target processor is undetermined and CS-Prolog scheduler

determines freely the target of the process. Note that the created process will start the execution of its goal only

in the working phase after the invocation of the start_processes/0 built-in predicate.

It is important to note that the cyclic behavior of real time processes (executing the Event_handling_goal for

each event occurrence) is organized by backtracking. The consequence of this is that side effects of

backtrackable predicates (such as, for example, assertz_b/1) will be undone after the evaluation of the goal.

Template and modes

new_rt(+process, +callable_term, +callable_term, +event_list,

 +periodicity)

new_rt(+process, +callable_term, +callable_term, +event_list,

 +periodicity, +virproc)

Examples

new_rt(process_name, event_goal, init_goal,

 [event_name], no_event, processor_name).

This example creates a real-time process which executes the init_goal as initialisation and then it waits for

the occurrences of the event_name event. Whenever such event occurs it executes the event_goal. This

real-time process is not sensitive to the timed events.

Built-in predicates

178

new_rt(process_name, event_goal, true, [], period(300)).

This example creates a real-time process which has no initialisation goal (it executes the true/0 built-in

predicate). The real-time process executes in every 3 seconds the event_goal, but it does not wait for

explicitly generated events.

new_rt(name, process_goal(event), process_goal(init),

 [ev(1), ev(2), stop], idle(700)).

This example creates a real-time process which has its event handling and initialisation goal as two different

invocation of the same predicate. The real-time process is sensitive for three explicit events. If none of them

event occurs for 7 seconds then a timed event is generated.

Errors

permission_error(parallel, process, 0)

The new_rt/[5,6] built-in predicate has been called in the working phase

instantiation_error

The name of the process is a variable or contains a variable.

domain_error(unique_name, Process_name)

The name of the process is not a valid unique name.

instantiation_error

The Event_list argument is a variable or contains a variable.

domain_error(unique_name, Culprit)

The Culprit element of the Event_list argument is not a valid unique name.

permission_error(create, event, Culprit)

The event name being specified (Culprit element of the Event_list argument) is either one of the following reserved

system events: period(_), idle(_), no_event, in which case ErrInfo-Other will be the atom reserved_event name,

or it has already occurred on the event list of this or another process. In the latter case ErrInfo-Other will be the atom

multiple_targets.

instantiation_error

The Periodicity argument is a variable.

type_error(periodicity, Periodicity)

The Periodicity argument is not a valid periodicity term.

type_error(integer, Periodicity)

The Periodicity term contains non-integer argument.

domain_error(positive_number, Periodicity_arg)

The Periodicity_arg argument of Periodicity is an integer but it is not positive.

instantiation_error

The name of the virtual processor is a variable or contains a variable.

domain_error(unique_name, Processor_name)

The name of the virtual processor is not a valid unique name.

permission_error(create, process, Process_name)

A process with the same name has been already created.

kill/1

Description

kill(Process_name)

Process_name should be a system-wide unique name of an already existing process. the kill/1 predicate

removes the Process_name process created previously by a call of the new/[2,3] or new_rt/[5,6] predicate.

Note that the kill/1 predicate works only in the prelude phase. Consequently it can not be used for deleting

running processes. Once the program is in the working phase, processes can only disappear when they finished

the execution of their goal. This case has nothing to do with the kill/1 built-in predicate.

If a running process has to be deleted in the working phase, an interrupt can be sent to it and the process

should react to this interrupt by finishing execution.

The deletion of the main process is not allowed.

Chapter 29: Parallel programming built-in predicates

179

Template and modes

kill(+process)

Examples

kill(superfluous_process).

The superfluous_process is deleted, so it will not be started at the beginning of the working phase.

Errors

permission_error(parallel, process, 0)

The kill/1 built-in predicate has been called in the working phase

instantiation_error

The name of the process is a variable or contains a variable

domain_error(unique_name, Process_name)

The name of the process is not a valid unique name.

existence_error(process, Process_name)

The process to be killed does not exist.

permission_error(remove, process, Process_name)

The main process would be deleted.

start_processes/0

Description

start_processes

The start_processes/0 predicate ends the prelude phase and starts the working phase.

In those cases when the user does not want use the parallel feature of CS-Prolog the working phase may be

empty. However, to achieve a more efficient memory handling, it is advisable to invoke a start_processes/0

call at the beginning of the prelude phase. This makes the prelude phase almost empty and the single process

will run entirely in the working phase. This technique is not obligatory, but the memory handling is more

efficient this way.

This predicate can be invoked at most once and only by the main process.

Template and modes

start_processes

Examples

new(process_name, process_goal), start_processes.

This example creates a process and starts the working phase.

new(process_name, process_goal), start_processes, continue_main_goal.

This example is similar to the above one, but here the main process continues its task in the working phase too.

start_processes, main_goal_body.

This example does not create any process, but it instructs the CS-Prolog scheduler to regard the body of the

main goal as the execution of a single process. (This technique increases the efficiency of the memory

handling.)

Errors

permission_error(parallel, process, 0)

The start_processes/0 built-in predicate has been called in the working phase.

Built-in predicates

180

open_channel_for_send/1

open_channel_for_send/2

open_channel_for_receive/1

open_channel_for_receive/2

Description

open_channel_for_send(Channel_name)

open_channel_for_send(Channel_name, Open_mode)

open_channel_for_receive(Channel_name)

open_channel_for_receive(Channel_name, Open_mode)

Channel_name should be a system-wide unique name. Open_mode is one of the fixed atoms detailed later.

The open_channel_for_send/[1,2] and open_channel_for_receive/[1,2] predicates open the appropriate end

of the channel Channel_name. After the opening the caller process has the right to perform the appropriate

operation on the channel until it is closed by a close_channel/1 built-in predicate.

Open_mode (if it is present) must be one of the following three atoms:

unconditional

conditional

scheduled

Using them the behavior of the open_channel_for_send/[1,2] and open_channel_for_receive/[1,2] predicates

can be modified. As far as the desired channel is instantly ready for being opened the execution of the predicate

is identical in all of the three cases, the channel is opened successfully. In the case when the channel

Channel_name cannot be currently opened in the appropriate direction (send or receive) because it is already

opened by someone else, then Open_mode determines the behavior of the open_channel_for_send/[1,2] and

open_channel_for_receive/[1,2] predicates as follows:

unconditional

The open_channel_for_send/[1,2] and open_channel_for_receive/[1,2] predicates

signal an error. (Default case, identical the one argument predicate)

conditional

The open_channel_for_send/[1,2] and open_channel_for_receive/[1,2] predicates fail.

scheduled

The open_channel_for_send/[1,2] and open_channel_for_receive/[1,2] predicates cause

the suspension of the caller process which remains suspended until the desired channel

becomes ready to be opened in the appropriate direction (i.e. the current owner of the

channel closes it). Then it succeeds as if the channel were ready at the moment of the

invocation.

One process can not hold simultaneously both ends of a channel.

Template and modes

open_channel_for_send(+channel)

open_channel_for_send(+channel,+atom)

open_channel_for_receive(+channel)

open_channel_for_receive(+channel,+atom)

Examples

open_channel_for_send(channel_name).

This example opens the channel channel_name for sending

open_channel_for_send(channel_name, unconditional).

Same as the previous example.

Chapter 29: Parallel programming built-in predicates

181

open_channel_for_receive(channel(for(receive))),

 conditional).

If the channel(for(receive)) is already opened for receive by someone else then this call will fail,

otherwise succeed.

open_channel_for_receive(channel(0), scheduled).

This call will cause the caller process to be suspended if channel(0) is already opened by someone else,

until it is released by a close_channel/1 call. If channel(0) is instantly ready for opening this example

succeeds without suspension.

Errors

In the description of errors the operation open_channel_for_send/[1,2] can always be substituted by

open_channel_for_receive/[1,2].

permission_error(parallel, process, 0)

The open_channel_for_send/[1,2] built-in predicate has been called in the prelude phase.

instantiation_error

The name of the channel is a variable or contains a variable or the Open_mode argument is a variable.

domain_error(unique_name, Channel_name)

The name of the channel is not a valid unique name.

type_error(atom, Open_mode)

The Open_mode argument is neither a variable nor an atom.

domain_error(channel_mode, Open_mode)

The Open_mode argument is an atom but not a valid channel open mode.

permission_error(open, channel, Channel_name)

The channel is already opened by someone else and the unconditional open mode was used.

permission_error(open, channel, Channel_name)

The channel is already opened by the caller process. The ErrInfo-Other will be the atom already_open.

permission_error(open, channel, Channel_name)

The channel is already opened in the reverse direction by the caller process. The ErrInfo-Other will be the atom

other_end_owned.

close_channel/1

Description

close_channel(Channel_name)

The Channel_name should be a system-wide unique name. The close_channel/1 predicate releases the end of

a channel which has been previously opened by one of the open_channel_for_send/[1,2] or

open_channel_for_receive/[1,2] calls. Only the owner of the channel can issue this call. After the closing

other processes have the opportunity to open this channel again.

Template and modes

close_channel(+channel)

Examples

close_channel(channel_name).

The channel channel_name is closed.

Errors

permission_error(parallel, process, 0)

The close_channel/1 built-in predicate has been called in the prelude phase.

instantiation_error

The name of the channel is a variable or contains a variable.

domain_error(unique_name, Channel_name)

The name of the channel is not a valid unique name.

Built-in predicates

182

existence_error(channel, Channel_name)

The channel Channel_name does not exist.

permission_error(close, channel, Channel_name)

The channel Channel_name is held by someone else, so the caller process has no right to close it.

send/2

Description

send(Channel_name_or_list, Message)

Channel_name_or_list should be a channel specifier. Message should be type of communication data. The

send/2 built-in predicate sends the message on the channel(s) determined by the Channel_name_or_list

argument.

If Channel_name_or_list is a single channel then the channel must have been opened previously by an

open_channel_for_send/[1,2] call. The scheduler tries to synchronize the sender and the receiver process. It

means that if there is a process on the other end of the channel and the process is ready for receive a message

on this channel (it is waiting in a receive/[2,3,4] call) the message passing takes place immediately and send/2

succeeds. Otherwise, the caller process is suspended in the send/2 call and will stay suspended until the

receiver process is ready to accept the message. Then the message passing takes place and the send/2 call

succeeds.

If the Channel_name_or_list is a non-empty list of channel names then they all must have been opened

correctly by previous open_channel_for_send/[1,2] calls. In this case send/2 performs a broadcast-like

message passing on the listed channels i.e. it sends the Message on every channel. The scheduler tries to

establish the synchronism one by one for each channel. It means that if every process is ready to accept a

message on the appropriate channel then the Message will be sent on every channel and send/2 succeeds. If

only a part of them is ready to accept a message (if any) then they will get the message, but send/2 becomes

suspended. As soon as a receiver process becomes ready to accept the message it will get it. The send/2 call

remains suspended until the last receiver process is ready to accept the message, and then send/2 succeeds.

Note that send/2 does not require the global synchronism of all receiver processes with the sender process,

instead, if a receiver process got its message it can continue the execution of its goal, regardless to fact that the

sender process is already suspended because of other receiver processes. Furthermore, the order of channels in

the Channel_name_or_list argument has nothing to do with the order as the messages are sent on channels.

This order depends only on the ability of the receiver processes to accept.

If the Channel_name_or_list is an unbound variable then the set of all channels that the caller process opened

for sending is assumed as the target of the send/2 call. If the process has no channels opened for sending then

a run-time error is signaled. The message passing takes place as if the list of all owned channels were given in

the Channel_name_or_list argument. When at last send/2 succeeds then the unbound variable in the

Channel_name_or_list argument will be unified with the list of these channels.

If the Message argument contains unbound variables then during the message passing they will loose any

relationship with variables in the sender process. If they are unified in the receiver process, this unification has

no effect on the variables in the sender process at all.

Template and modes

send(?chanspec, +message)

Examples

send(single_channel, hello).

This example sends the atom hello on the single_channel.

send([channel(1), channel(2), other_channel],

 combined(message(1994, Variable))).

This example sends a more complex message on the three listed channels.

send(CHANNELS, for_everybody(hello)).

This example sends a message on all channels that the caller process owns. It is assumed that the CHANNELS

variable is unbound before the call, but it will be unified with the list of the involved channels.

Chapter 29: Parallel programming built-in predicates

183

Errors

permission_error(parallel, process, 0)

The send/2 built-in predicate has been called in the prelude phase.

instantiation_error

The name of the channel contains a variable.

domain_error(unique_name, Channel_name)

The name of the channel is not a valid unique name.

existence_error(channel, Culprit)

The Culprit channel (the Channel_name_or_list argument itself or one element of it) is not owned by the caller

process (may not exist at all).

permission_error(output, channel, Culprit)

The Culprit channel (the Channel_name_or_list argument itself or one element of it) is not opened for sending.

permission_error(output, channel, Culprit)

The Culprit channel is a multiple element of the Channel_name_or_list list. The ErrInfo-Other will be the atom

repeated_occurrence.

instantiation_error

The Message argument is a variable.

test_send/1

test_send/2

Description

test_send(Channel_name_or_list)

test_send(Channel_name_or_list, Ready_channels)

Channel_name_or_list should be a channel specifier. Ready_channels should be an unbound variable. The

test_send/[1,2] built-in predicate serves for determining that in place of the test_send/[1,2] a send/2 predicate

with the same channel argument would be able to send at least one message immediately (there is at least one

channel ready to accept a message) or not. If test_send/[1,2] succeeds it would, if fails it would not. The

semantics of the Channel_name_or_list argument is identical to the one of the send/2 predicate (single name,

list of names or unbound variable for all owned channels). If the Ready_channels argument is given and

test_send/[1,2] succeeds than it is unified with a list of the names of the channels through which a message

would be able to be sent immediately. Depending on the current state of the involved channels this list may

contain either a part of or the whole of the channel names specified in the first argument. Note that the order of

the channel names in the returned list is undetermined.

Template and modes

test_send(?chanspec)

test_send(?chanspec, -chanspec)

Examples

Let's suppose that the program contains the following predicates:

optional_send :-

 test_send(my_channel), send(my_channel, my_message);

 true.

alternative_send :-

 test_send([left_channel, right_channel], Act_channel),

 (Act_channel = [left_channel], send(left_channel,

 left_message;

 Act_channel = [right_channel], send(right_channel,

 right_message);

 true);

 true.

send_to_all_now :-

Built-in predicates

184

 test_send(_,Ready_channels),

 send(Ready_channels,to_everybody).

optional_send.

This call will send a message on the channel my_channel, only if the message can be sent immediately.

alternative_send.

This call sends on one or none of the two channels a message depending on the fact that only one of them is

ready to pass a message immediately or not.

send_to_all_now.

This call sends a message on every channels the caller process owns and ready to pass a message immediately.

Errors

permission_error(parallel, process, 0)

The test_send/[1,2] built-in predicate has been called in the prelude phase.

instantiation_error

The name of the channel contains a variable.

domain_error(unique_name, Channel_name)

The name of the channel is not a valid unique name.

existence_error(channel, Culprit)

The Culprit channel (the Channel_name_or_list argument itself or one element of it) is not owned by the caller

process (may not exist at all).

permission_error(output, channel, Culprit)

The Culprit (the Channel_name_or_list argument itself or one element of it) channel is not opened for sending.

permission_error(output, channel, Culprit)

The Culprit channel is a multiple member of the Channel_name_or_list list. The ErrInfo-Other will be the atom

repeated_occurrence.

type_error(variable, Ready_channels)

The Ready_channels argument is a not variable.

receive/2

receive/3

receive/4

Description

receive(Channel_name_or_list, Variable)

receive(Channel_name_or_list, Variable, Winner_channel)

receive(Channel_name_or_list, Variable, Winner_channel,

 Remote_connection)

Channel_name_or_list should be a channel specifier. Variable, Winner_channel, and Remote_connection

should be unbound variables. The receive/[2,3,4] built-in predicate receives a message from the channel (or

one of the channels) specified by the Channel_name_or_list argument. The receive/4 predicate is explained

in more detail in the networking supplement.

If Channel_name_or_list is a single channel then the channel must have been opened previously by an

open_channel_for_receive/[1,2] call. The scheduler tries to synchronize the receiver and the sender process.

It means that if there is a process on the other end of the channel and the process is ready for send a message

on this channel (it is waiting in a send/2 call) the message passing takes place immediately, the message is

unified with Variable and receive/[2,3,4] succeeds. Otherwise, the caller process is suspended in the

receive/[2,3,4] call and will stay suspended until the sender process is ready to pass a message. Then the

message exchange takes place, the message is unified with Variable and the receive/[2,3,4] call succeeds.

If the Channel_name_or_list is a non-empty list of channel names then they all must have been opened

correctly by previous open_channel_for_receive/[1,2] calls. In this case receive/[2,3] performs exactly one

message passing on one of them. The scheduler tries to establish the synchronism between the receiver process

Chapter 29: Parallel programming built-in predicates

185

and one of the sender processes. It means that if there is at least one sender process which can send a message

then the scheduler chooses a process randomly among them, accepts its message, unifies it with the Variable

argument and receive/[2,3,4] succeeds immediately. Otherwise, receive/[2,3,4] becomes suspended until at

least one of the sender processes can yield a message, and then it accepts the message, unifies it with the

Variable argument and receive/[2,3,4] succeeds. Note that sender processes that were able to send a message,

but they were not chosen during this receive/[2,3,4] call, remain still suspended in their send/2 calls and they

will have a chance to send their message during the next occurrences of receive/[2,3,4] calls on the appropriate

channels.

If the Channel_name_or_list is an unbound variable then the list of all channels that the caller process opened

for receiving is assumed as the source of the receive/[2,3,4] call. If the process has no channels opened for

receiving then a run-time error is signaled. The message passing takes place as if the list of all owned channels

had been given explicitly in the Channel_name_or_list argument. When receive/[2,3,4] succeeds then the

unbound variable in the Channel_name_or_list argument will be unified with the list of these channels.

If the Winner_channel argument is given (receive/[3,4]) then in case of success this argument will be unified

with the name of the winner channel (i.e. the channel which was chosen to provide the message), regardless of

whether receive/[3,4] was called with a channel specifier representing a single channel or multiple channels.

Note that starvation is possible for multi-way receive: the order of polling is fixed, and local partners (residing

on the same processor) have better chance.

The fourth argument, Remote_connection, can be used for obtaining additional information about the sender

when messages are being received from the telecommunication network. If the transfer was local, then this

argument is unified with nil. Otherwise, when the transfer involved the network, the following list is unified

with Rem_Conn:

[[ip_addr(Ipaddr), ip_port(Tcp_Port)], Connection_Name]

Ipaddr and Tcp_port give the full TCP/IP address of the remote application, and Connection_Name is

the name of the sending remote connection. The net address is returned in Remote_connection because the

sender application may be an unsolicited partner having no partner representation. If it is an explicit partner,

its name can be retrieved using the partner_current_attribute predicate (see the networking supplement for

more details).

Template and modes

receive(@chanspec, -term)

receive(@chanspec, -term, -channel)

receive(@chanspec, -term, -channel, -term)

Examples

receive(single_channel, Message).

This example waits a message to its Message variable on the single_channel.

receive([channel(1), channel(2), other_channel], Message,

 Winner).

This example waits one message on one of the three channels on whichever comes first. The message is unified

with Message, the name of the winner channel is unified with Winner.

receive(CHANNELS, Messages).

This example waits one message on all channels that the caller process owns. It does not care which channel

provided the message. It is assumed that the CHANNELS variable is unbound before the call, but it will be

unified with the list of the involved channels.

receive(ch(air_port), Mess, _, Sender),

 Sender = [_, airlink].

Receives a message and then checks whether it had been sent from a remote connection named airlink.

receive(ch(air_port), Mess, _, Sender),

 Sender = [[ip_addr(IA), ip_port(TP], _],

 partner_current_attribute(near, ip_addr, IA),

 partner_current_attribute(near, ip_port, TP).

Receives a message and checks whether it had been sent from a partner named near.

Built-in predicates

186

Errors

permission_error(parallel, process, 0)

The receive/[2,3] built-in predicate has been called in the prelude phase.

instantiation_error

The name of the channel contains a variable.

domain_error(unique_name, Channel_name)

The name of the channel is not a valid unique name.

existence_error(channel, Culprit)

The Culprit channel (the Channel_name_or_list argument itself or one element of it) is not owned by the caller

process (may not exist at all).

permission_error(input, channel, Culprit)

The Culprit channel (the Channel_name_or_list argument itself or one element of it) is not opened for receiving.

permission_error(input, channel, Culprit)

The Culprit channel is a multiple member of the Channel_name_or_list list. The ErrInfo-Other will be the atom

repeated_occurrence.

type_error(variable, Variable)

The Variable argument is not a variable.

type_error(variable, Winner_channel)

The Winner_channel argument is not a variable.

type_error(variable, Rem_Conn)

The Rem_Conn argument is not a variable.

test_receive/1

test_receive/2

Description

test_receive(Channel_name_or_list)

test_receive(Channel_name_or_list, Ready_channels)

Channel_name_or_list should be a channel specifier. Ready_channels should be an unbound variable. The

test_receive/[1,2] built-in predicate serves for determining that in place of the test_receive/[1,2] a

receive/[2,3,4] predicate with the same channel argument would be able to get at least one message

immediately (there is at least one channel ready to send a message) or not. If test_receive/[1,2] succeeds it

would, if fails it would not. The semantics of the Channel_name_or_list argument is identical to the one of

the receive/[2,3,4] predicate (single name, list of names or unbound variable for all owned channels). If the

Ready_channels argument is given and test_receive/[1,2] succeeds than it is unified with a list of the names

of the channels through which a message would be able to be received immediately. Depending on the current

state of the involved channels this list may contain either a part of or the whole of the channel names specified

in the first argument. This argument is very similar to Winner_channel argument of the receive/[2,3,4]

built-in predicate, but it is different because here the possible winners are gathered in a list. Obviously, in place

of the test_receive/[1,2], the receive/[2,3,4] built-in predicate would return only the name of the single winner

channel. Note that the order of the channel names in the returned list is undetermined.

Template and modes

test_receive(?chanspec)

test_receive(?chanspec, -chanspec)

Examples

Let's suppose that the program contains the following predicates:

optional_receive :-

 test_receive(my_channel), receive(my_channel,

 My_message);

 true.

selective_receive :-

Chapter 29: Parallel programming built-in predicates

187

 test_receive([master_channel, slave_channel],

 Act_channel),

 (Act_channel = [master_channel],

 receive(master_channel, Master_message);

 true);

 true.

receive_from_one_now :-

 test_receive(_,Ready_channels),

 receive(Ready_channels, Any_message).

optional_receive.

This call wants to accept a message on the channel my_channel, only if the message can be got immediately.

selective_receive.

This call accept a message on the master_channel only when this channel is the only one that is able to

provide a message immediately.

receive_from_one_now.

This call tries to get one message on one of all channels the caller process owns and ready to yield a message

immediately.

Errors

permission_error(parallel, process, 0)

The test_receive/[1,2] built-in predicate has been called in the prelude phase.

instantiation_error

The name of the channel contains a variable.

domain_error(unique_name, Channel_name)

The name of the channel is not a valid unique name.

existence_error(channel, Culprit)

The Culprit channel (the Channel_name_or_list argument itself or one element of it) is not owned by the caller

process (may not exist at all).

permission_error(input, channel, Culprit)

The Culprit (the Channel_name_or_list argument itself or one element of it) channel is not opened for receiving.

permission_error(input, channel, Culprit)

The Culprit channel is a multiple member of the Channel_name_or_list list. The ErrInfo-Other will be the atom

repeated_occurrence.

type_error(variable, Ready_channels)

The Ready_channels argument is not a variable.

deschedule_process/0

Description

deschedule_process

This predicate causes the active process to relinquish the remaining part of its current time slice in order to

give way to other ready processes residing on the same physical processor.

The predicate can be used by a process performing some background activity for promoting the progress of

some other processes.

Template and modes

deschedule_process

Errors

permission_error(parallel, process, 0)

The deschedule_process/0 built-in predicate has been called in the prelude phase.

Built-in predicates

188

test_process/1

test_process/2

Description

test_process(Process_name)

test_process(Process_name, Process_state_record)

Process_name should be either a system-wide unique name or an unbound variable. In the latter case the name

of the caller process is unified with Process_name. The test_process/[1,2] built-in predicate succeeds if there

is a process in the system with Process_name as its name, otherwise fails. It unifies a process state record with

Process_state_record argument (if it is required). The process state record is an eight-element Prolog list as

follows:

[Process_name, Process_flag, Actual_processor,

 Owned_send_channels, Owned_receive_channels,

 Process_time, Event_queue_current_size,

 Event_queue_size_limit]

where

Process_name is the name of the tested process (it contains the same term as the first argument on

exit).

Process_flag is one of the following atoms:

active

the process currently is being executed;

suspended

the process is ready to run, but the hosting processor is executing another process

(waits for time slice);

unsent

the process is waiting for the completion of a send/[1,2] call;

unreceived

the process is waiting for the completion of a receive/[2,3,4] call;

sendunopened

the process is waiting for the completion of an open_channel_for_send/2 call

('scheduled' mode);

receiveunopened

the process is waiting for the completion of an open_channel_for_receive/2 call

('scheduled' mode);

unevented

the (real-time) process is waiting for the next event with which to proceed

(generated or timer event).

terminated

the evaluation of the principal goal of the process is finished.

short_term_transfer

the processor is waiting for the completion of some internal (service) message

transfer that must complete without any further interaction with the user program.

Actual_processor is the symbolic name of the processor hosting the process, in the form

processor(N)

where N is 1 for the root processor, and consecutively increasing integer values are assigned to the

other ('internal') processors.

Owned_send_channels is a Prolog list of the names of all the channels opened for sending (empty

list if none).

Chapter 29: Parallel programming built-in predicates

189

Owned_receive_channels is a Prolog list of the names of all the channels opened for receiving

(empty list if none).

Process_time is the processor time in hundredth of seconds used by the process.

Event_queue_current_size is the number of (generated) events waiting for being served by the

process. Always zero for non-real-time processes.

Event_queue_size_limit is the current limit of the number of events waiting service at the process. Its

value can be less than the current queue size if it had been lowered (events already on the queue are

not discarded in that case). Always zero for non-real-time processes.

Note: In order to be prepared for further extension of the reported status components it is advised to treat the

state record as a list containing at least eight elements.

Template and modes

test_process(?process)

test_process(?process, ?term)

Examples

test_process(Act_process).

This call unifies the name of the current process with Act_process.

test_process(my_process, [_, State, _, _, _]).

This call unifies the state of my_process with State.

test_process(my_sender_process, [_, _, _, [], _]).

This call checks whether the my_sender_process has channels opened for sending.

test_process(_, [My_process|_]).

This call returns the name of the currently executed process.

Errors

permission_error(parallel, process, 0)

The test_process/[1,2] built-in predicate has been called in the prelude phase.

instantiation_error

The name of the process contains a variable.

domain_error(unique_name, Process_name)

The name of the process is not a valid unique name.

test_channel/2

Description

test_channel(Channel_name, Channel_state_record)

Channel_name should be a system-wide unique name. The test_channel/2 built-in predicate fails if there is

no channel in the system with Channel_name as its name, otherwise it unifies the appropriate channel state

record with the Channel_state_record argument. The channel state record is a five-element Prolog list as

follows:

[Channel_name, Channel_flag,

 Sender_process, Receiver_process, Channel_state]

where

Channel_name is the name of the required channel (it is the same name as the first argument);

Channel_flag is one of the following atoms:

sendopened

the channel is opened only for sending;

receiveopened

the channel is opened only for receiving;

opened

Built-in predicates

190

the channel is opened for both sending and receiving;

Sender_process is one of the following:

nil ([], the empty Prolog list) if the sending end of the channel is not opened;

the name of the process that opened the channel for sending, if it is presently opened by a

process (by open_channel_for_send/[1.2]);

a list of form [port, PortName] if the sending end of the channel is presently

associated with a networking Port object;

a list of form [dock, DockName] if the sending end of the channel is presently

associated with a networking Dock object.

Receiver_process is one of the following:

nil ([], the empty Prolog list) if the receiving end of the channel is not opened;

the name of the process that opened the channel for receiving, if it is presently opened by

a process (by open_channel_for_receive/[1.2]);

a list of form [connection, ConnectionName] if the receiving end of the channel

is presently associated with a networking Connection object.

Channel_state is one of the following four atoms:

quiet

no transfer operation is in progress;

receiverequested

the process at the receiving end of the channel requested a message, but the

sending end didn't offer it yet;

sendarrived

the process at the sending end has offered a message, but the receiving end didn't

claim it yet;

ready_to_transfer

both the sending and receiving ends of the channel are ready to transfer. Only

channels connecting processes on different processors can be in this state

Networking is explained in detail in the companion Networking supplement of the manual.

Template and modes

test_channel(+channel, ?term)

Examples

test_channel(my_channel, [_, opened, _ ,_ ,_]).

This example tests whether my_channel is opened on both of its ends.

test_channel(remote_channel, [_, _, _, remote_process, _]).

This example checks whether the remote_channel is opened for receiving by the remote_process.

Errors

permission_error(parallel, process, 0)

The test_channel/2 built-in predicate has been called in the prelude phase.

instantiation_error

The name of the channel is a variable or contains a variable.

domain_error(unique_name, Channel_name)

The name of the channel is not a valid unique name.

Chapter 29: Parallel programming built-in predicates

191

process_list/1

Description

process_list(Process_state_records)

The process_list/1 predicate unifies a list of process state records with Process_state_records for each process

on the actual processor. The process state records are the same as defined at the test_process/[1,2] built-in

predicate.

Template and modes

process_list(?term)

Examples

process_list([[First_name|_]|_]).

This example unifies the name of the first process with First_name.

Errors

permission_error(parallel, process, 0)

The process_list/1 built-in predicate has been called in the prelude phase.

channel_list/1

Description

channel_list(Channel_state_records)

The channel_list/1 built-in predicate unifies a list of channel state records with Channel_state_records for

each channel having at least one end at the actual processor. The channel state records are described at the

test_channel/2 built-in predicate.

Template and modes

channel_list(?term)

Examples

channel_list([First_name|_]|_]).

This example unifies the name of the first channel with First_name.

Errors

permission_error(parallel, process, 0)

The channel_list/1 built-in predicate has been called in the prelude phase.

get_event/1

get_event/2

Description

get_event(Event_name)

get_event(Event_name, Event_data)

The get_event/[1,2] built-in predicate can be called only during the execution of an event-handling goal. It

unifies Event_name with the name of the event that caused the execution of the event-handling goal. If the

event contains data argument Event_data is unified with the data otherwise it is unified with an empty Prolog

list. If an implicit timer event caused the restart of the event handling goal then the periodicity term given in

the Periodicity argument of the new_rt/[5,6] built-in predicate is unified with Event_name and empty list

Built-in predicates

192

with Event_data. This predicate does not remove the event and its data from the event queue, so till the end of

the current execution of the event handling goal, further invocations of the get_event/[1,2] built-in predicate

will provide the same result. The event will be removed from the event queue by the system after the

termination of the event-handling goal.

Template and modes

get_event(?variable)

get_event(?variable, ?variable)

Examples

The following examples show complete clauses, the head of which could appear as the

Event_handling_goal argument of a new_rt/[5,6] call.

event_goal :-

 get_event(stop_event), !, fail;

 get_event(EVENT), write(EVENT).

If stop_event arrives then the real time process finishes its execution. For every other event the name of the

event is written to the output.

event_goal :-

 get_event(event, stop_data), !, fail;

 get_event(event, Data), write(Data).

If an event arrives with the stop_data then the real time process finishes its execution. For every other

occurrences of event the data of the event is written to the output.

Errors

permission_error(parallel, process, 0)

The get_event/[1,2] built-in predicate has been called in the prelude phase or during the execution other than the event-

handling goal of a real-time process.

permission_error(access, event, 0)

The get_event/[1,2] built-in predicate has been called from the initializing goal (specified by the Init_goal argument of

the corresponding new_rt/[5,6] call) of a real-time process.

generate_event/1

generate_event/2

Description

generate_event(Event_name)

generate_event(Event_name, Event_data)

The predicate serves for generating an explicit internal event. Event_name should be the (system-wide unique)

name of an existing event kind (defined during real-time process creation). Event_data should be a

communication data item (any term except a single unbound variable). If this argument is omitted then an

empty list is assumed as the data item to be passed.

The generate_event/[1,2] call always succeeds if called with proper arguments.

The asynchronous nature of communication using events implies that a waiting queue is used to store those

events having arrived while the process is still busy with serving previously arrived events. It is the user's

responsibility to ensure that the service rate be higher than the arrival rate (perhaps through implementing

some flow-control discipline). The queue merely serves to accommodate temporary surges in arrivals. The

length of the queue is restricted by a modifiable value, which is set to 100 when the process starts, and can be

changed through the call of set_event_qsize_limit/[1,2].

If the event queue of a process is full and new event arrives to this process, a

system_error(event_queue_overrun, ...)

Chapter 29: Parallel programming built-in predicates

193

exception is raised (which will be directed to main_process), and the offending event is discarded. With the

aim of reducing the frequency of such exceptions only the first overrun event is signaled from a possible

sequence until the 'non-full' state of the queue is restored (by the process consuming events from the head of

the queue).

If an event is generated when the servicing process of that event type has already terminated, the new event can

be treated as overrun or just be silently discarded, under the control of the discard_mttp prolog flag.

Template and modes

generate_event(+event)

generate_event(+event, +data)

Examples

generate_event(my_event).

This example generates an occurrence of the my_event. If the real-time process asks the event data of that

occurrence it will get an empty Prolog list as event data.

generate_event(my_event, something_occured).

This example generates an occurrence of the my_event with something_occured as event data.

Errors

permission_error(parallel, process, 0)

The generate_event/[1,2] built-in predicate has been called in the prelude phase.

instantiation_error

The name of the event is a variable or contains a variable.

domain_error(unique_name, Event_name)

The name of the event is not a valid unique name.

existence_error(event, Event_name, [])

The required event does not exist.

permission_error(access, event, Event_name)

Event_name is one of the following reserved system events: period(_), idle(_), no_event.

instantiation_error

The Event_data argument is a variable.

set_timeout/1

Description

set_timeout(Time)

The Time argument should be an integer representing a virtual time interval in hundredth of second, which

must be shorter than half a day (4320000). The set_timeout/1 built-in predicate initializes the alarm clock of

the caller process and succeeds. The execution of the caller process continues. As soon as the time interval

specified in the Time argument elapses the scheduler will signal the following interrupt, unless the alarm clock

had been stopped by the reset_timeout/0 built-in predicate in the meantime:

interrupt(task_timeout,[])

It is the user's responsibility to take care of the correct handling of this interrupt, otherwise this interrupt will

cancel the execution of the whole CS-Prolog program.

The alarm clock is ticking only when the process is being executed, so it shows not the real time, but rather the

wall-clock time that passed for the process.

The alarmed process is not interrupted immediately if the process is executing an I/O built-in predicate. It will

be interrupted when the appropriate I/O operation is terminated.

Template and modes

set_timeout(+integer)

Built-in predicates

194

Examples

set_timeout(700).

This example will cause a timeout interrupt at the caller process after 7 seconds active time.

Errors

instantiation_error

The Time argument is a variable.

type_error(integer, Time)

The Time argument is not an integer.

domain_error(timeout, Time)

The Time argument is an integer outside the boundaries of the acceptable range [0,4319999].

reset_timeout/0

Description

reset_timeout

The reset_timeout/0 built-in predicate can be used to stop the alarm clock of the caller process before the time-

out, previously set by the set_timeout/1 built-in predicate, sets it off. The call always succeeds.

Template and mode

reset_timeout

Examples

Let's suppose that the program contains the following predicate:

set_reset :-

 set_timeout(1000), if_ok, reset_timeout;

 true.

set_reset.

This call succeeds if the if_ok predicate is executed successfully within 10 seconds, otherwise a timeout

interrupt is generated.

Errors

None.

cause_interrupt/2

Description

cause_interrupt(Process_name, Interrupt_data)

Process_name should be a system-wide unique name and Interrupt_data should be a communication data.

The cause_interrupt/2 built-in predicate signals the following interrupt at the Process_name process:

interrupt(Current_predicate,program,Interrupt_data)

where Current_predicate is the predicate indicator of the procedure the execution of which had been

interrupted, and the last argument of the interrupt term is the same term as the Interrupt_data argument of

the cause_interrupt/2 built-in predicate. Note that the execution of the interrupted process will be broken even

if it is suspended for some reason. In this case the suspended call is abandoned.

It is the user's responsibility to take care of the correct handling of this interrupt, otherwise this interrupt will

cancel the execution of the whole CS-Prolog program.

The target process is interrupted at the first possible interruption point encountered after the arrival of an

interrupt request (generated by cause_interrupt or of any other kind).

Chapter 29: Parallel programming built-in predicates

195

Note that the majority of built-in predicates do not contain such interruption point inside. In particular the I/O

predicates cannot be interrupted; this can be felt when inputting from the keyboard.

The most important exception from the above rule is the set of communication-oriented predicates that depend

on the actions of other processes (send, receive, open with the scheduled option). These can be interrupted

during wait.

A flow control scheme is used to prevent flooding the system with unserviced interrupts. It is similar to the

scheme used in controlling the size of the event queue for real-time processes (see generate_event/[1,2]). If the

interrupt queue of a process is full and new interrupt arrives to this process, a

system_error(interrupt_queue_overrun, ...)

exception is raised (which will be directed to the main process), and the offending interrupt is discarded. The

size of interrupt queue is fixed (100 for main process, 10 for any other process).

The treatment of interrupts directed to an already terminated process is controlled by the prolog flag

discard_mttp.

Real time tasks cannot be interrupted (at least in any sensible way), because part of the time is spent in the

outer loop, where no handler can be installed. Anyway, they can be alerted by events.

If the addressed process is executing an exception handler when the interrupt is caused, the interrupt does not

break the handler. The effect of the interrupt is deferred until the exception handling process is finished.

Template and modes

cause_interrupt(+process, +data)

Examples

cause_interrupt(other_process, my_interrupt).

This example signals an interrupt at the other_process and the last argument of the interrupt term will be

my_interrupt.

Errors

permission_errorparallel, process, 0)

The cause_interrupt/2 built-in predicate has been called in the prelude phase.

instantiation_error

The name of the process is a variable or contains a variable.

domain_error(unique_name, Process_name)

The name of the process is not a valid unique name.

existence_error(process, Process_name)

The required process does not exist.

instantiation_error

The Interrupt_data argument is a variable.

set_event_qsize_limit/1

set_event_qsize_limit/2

Description

set_event_qsize_limit(Size)

set_event_qsize_limit(Process_name, Size)

Process_name should be the (system-wide unique) name of an existing process (although the process may be

in terminated state). It specifies the process that is the target of the operation. In the one-argument variant the

target process is the current one (in which the call is executed).

The Size argument should be a positive integer. This value restricts the number of events (originated by

generate_event/[1,2]) that can be put on the waiting queue of the process issuing the call.

Built-in predicates

196

The initial limit is 100 (when the process is started). If a new event arrives when the queue is already full

(according to the current limit setting), the following exception is routed to main process:

system_error(event_queue_overrun, EventName).

and the new message is discarded. Any further events will be discarded without causing repeated exception as

long as the queue remains quiet. Sensitivity for overrun is restored when the process consumes enough

messages from the queue (by servicing them) so that the queue becomes non-full.

Note that if Size is less than the current number of actually waiting messages, the limit will be reset to the new

value but no events will be discarded from the tail of the queue and overrun will not be signaled on account of

the fact that the queue is overpopulated. Only new arrivals can raise the exception.

When a real-time process terminates, the queue size limit is set to 0, so the first event arriving after

termination will raise the overrun exception. This default behavior can be changed by setting the

discard_mttp prolog flag to on. In this case the late coming events (and interrupts) will be silently discarded.

For non-real-time process targets (which cannot receive events) and for terminated processes the predicate has

no effect (but succeeds).

Notes

Timer events are treated in a specific way, they don't contribute to the queue length.

Events might be enqueued to a real-time process even before the initial goal of the process is started!

If a real-time process terminates while there are any waiting events and/or interrupts on its queues, these items

are treated as latecomers (raise the corresponding signal or just are silently discarded under the control of

discard_mttp flag). This behavior is different from the case when the queue size limit is lowered below

current queue size, because in this situation it is sure that the waiting items cannot be serviced later.

Template and modes

set_event_qsize_limit(+integer)

set_event_qsize_limit(+process, +integer)

Errors

permission_error(parallel, process, 0)

The predicate was called in the prelude phase.

instantiation_error

The Size argument is an unbound variable.

type_error(integer, Size)

The Size argument is not an integer.

domain_error(queue_size,Size, [])

The Size argument is outside the boundaries of acceptable range [1,65535]

existence_error(process, Process_name)

Unknown target process.

Chapter 30: Miscellaneous predicates

197

30. Miscellaneous predicates

The predicates in this section perform diverse functions, not falling into the other thematic groups. Among

others here are collected those predicates which access some operating system services.

current_environment/2

Description

current_environment(Name, Value)

Queries the environment variables maintained by the operating system for the application. Generates all N and

V pairs (both atoms) that are the name of an environment variable and the associated value in the current

environment; and unifies Name with N, Value with V. current_environment/2 is resatisfiable: on backtrack

it unifies all N, V pairs (collected and frozen at the time of the initial execution) with Name and Value. So if

the environment is changed between two succeedings of the same call, the change is not reflected in the result.

Template and modes

current_environment(?atom, ?atom)

Examples

current_environment(Name, Value),

 format(’~a ~33|= ~a~n’,[Name,Value]), fail ; true.

Writes out the whole environment on the current ouput.

current_environment(’PATH’, Path), write(Path), nl.

Writes out the value of the PATH environment variable on the current ouput.

Errors

type_error(atom, Name)

Name is neither an atom nor a variable.

type_error(atom, Value)

Value is neither an atom nor a variable.

current_working_directory/1

Description

current_working_directory(PathName)

Unifies PathName with an atom composed from the string returned by the operating system as the absolute

pathname of the current working directory.

Template and modes

current_working_directory(?atom)

Errors

type_error(atom, PathName)

PathName is neither an atom nor a variable.

system_error

The operating system indicated an error (probably insufficient access rights for some element of the path).

ErrInfo-Other contains the error number obtained from the operating system.

Built-in predicates

198

change_working_directory/1

change_working_directory/2

Description

change_working_directory(NewPathName)

Is equivalent with

change_working_directory(NewPathName, _)

change_working_directory(NewPathName, OldPathName)

Unifies OldPathName with an atom composed from the string returned by the operating system as the

absolute pathname of the current working directory. If the unification fails, the predicate itself fails without

changing anything. Otherwise instructs the operating system to change the current working directory

according to the pathname constituting the NewPathName atom (either absolute or relative).

Template and modes

change_working_directory(+atom)

change_working_directory(+atom, -atom)

Examples

change_working_directory(’../test/data’, Previous),

 current_working_directory(Current),

 format(’previous wd: ~a, current wd: ~a~n’,[Previous, Current]).

Writes out something like:

previous wd: /usr/home/ks/csp/run, current wd: /usr/home/ks/csp/test/data

Errors

type_error(atom, NewPathName)

NewPathName is not an atom.

type_error(variable, OldPathName)

OldPathName is not an uninstantiated variable at the time of the call.

system_error

The operating system indicated an error (insufficient access rights, incorrect pathname or non-existing path element).

ErrInfo-Other contains the error number obtained from the operating system.

system/0

system/1

system/2

Description

system

system(CommandString)

system(CommandString, Status)

system/0 starts a new interactive default shell process; the control is returned to Prolog (with success) upon

termination of the shell process.

system/1 and system/2 both pass CommandString to a new default shell process for execution.

system/1 succeeds if the return status value is 0 after the completion of the shell, otherwise fails.

Chapter 30: Miscellaneous predicates

199

system/2 always succeeds and unifies the Status argument with a term describing the outcome of the command

execution. The status term has one of the following forms:

exitstatus(N)

termsig(S)

syserr(E)

If the shell process terminated normally, exitstatus(N) is returned, where N is the exit code that the child

process passed to _exit() or returned from its main function. Otherwise if the child process was terminated due

to the receipt of a signal then termsig(S) is returned where S is the numeric code of the signal. Finally, if

the execution of CommandString could not begin then syserr(E) is returned where E is the error number

indicating the reason of refusal by the system.

Template and modes

system

system(+atom)

system(+atom, -term)

Examples

system(’ps -e | fgrep csp > running.txt’).

Uses system services (SunOs in this example) to prepare a file containing information lines about currently

running operating system processes such that the substring ’csp’ appears within the line. Succeeds if at least

one such line is found, otherwise fails.

Errors

type_error(atom, CommandString)

CommandString is not an atom.

type_error(variable, Status)

Status is not an uninstantiated variable at the time of the call.

tempname/1

tempname /2

tempname /3

Description

tempname(FilePathName)

Is equivalent with

tempname(NewPathName, ’’)

tempname(FilePathName, DirPath)

Is equivalent with

tempname(NewPathName, DirPath, ’’)

tempname(FilePathName, DirPath, Prefix)

These predicates provide an interface to the tmpnam() and tempnam() functions of the operating system. They

generate file names that can be safely used for temporary files. Each call with the same arguments generates a

different name (but after a system-wide limit is reached the names begin to cycle). The file names are

temporary only in the sense that that they reside in a directory intended for temporary use; and they are likely

to be unique. It is the user's responsibility to remove any file created with one of these names when its use is

ended.

tempname/1 always generates a file name using the system-wide path-prefix set by the administrator at system

generation time.

tempname/2 and tempname/3 allow the user to control the choice of a directory. The argument DirPath

specifies the name of the directory in which the file is to be created. If the DirPath string is not a name for an

Built-in predicates

200

appropriate directory, the operating system uses its own default instead (governed by the TMPDIR

environment variable in the user's environment, the system-wide default set by the administrator, and using

/tmp as a last resort).

Many applications prefer their temporary files to have certain favorite initial letter sequences in their names.

Use the Prefix argument for this. (At most five characters from the front are used as the first few characters of

the temporary-file name.)

The predicates should never fail in normal circumstances. If, however, the operating system for some reason

cannot find an appropriate directory, the call will fail.

Template and modes

tempname(-atom)

tempname(-atom, +atom)

tempname(-atom, +atom, +atom)

Examples

tempname(FN), write(FN), nl.

Writes out something like:

'/tmp/baaa000M3'

tempname(FN, ’../test/data’, ’TmP’), write(FN), nl.

Writes out something like:

'../test/data/TmPJAAa000LV'

Errors

type_error(variable, FilePathName)

FilePathName is not an uninstantiated variable at the time of the call.

instantiation_error

DirPath or Prefix is an unbound variable.

type_error(atom, NewPathName)

DirPath is neither an atom nor a variable.

type_error(atom, Prefix)

Prefix is neither an atom nor a variable.

Chapter 31: Predicates for the CLP extension

201

31. Predicates for the CLP extension

The Constraint Logic Programming (CLP) extension model in CSP-II allows for installing several CLP solvers

in a CS-Prolog runtime program. Each solver can use its own set of interface predicates. There is, however, a

so called normal CLP interface predicate set, supported and partially implemented by the base (core) system. It

is recommended that each solver implement these predicates unless they are totally unfit for the purposes of

that particular solver (see chapter 39 for details).

This chapter includes the description of the second and third group of the system provided CLP interface

predicates. The predicates of the first group (extended type testing) are merged into chapter 13. Those

predicates the name of which begins with ‘clp_’ constitute the third group, the set of ‘normal’ CLP interface

predicates.

If a normal interface predicate call is issued by the program and the currently selected solver does not support

that call then a specific error is raised.

The set of normal interface predicates, defined originally for the ML Linear Solver, reflects the needs of the

linear programming constraint handling model. This chapter describes the generic behavior of the predicates at

the level as the system support is involved. The actually supported subset and the solver-specific details should

be described for each solver separately.

In general (depending on the features of the installed solvers), each CS-Prolog process can have active

instances of several different solvers, and each solver can have running instances in several CS-Prolog

processes. The models (satisfiable set of constraints), maintained by different instances of a particular solver,

are independent of each other.

All normal interface predicates except clp_debug/1 are backtrackable. Specifically for this group of predicates

this means that if the successful evaluation of a predicate causes any change in the model maintained by the

selected instance, then after backtracking over the call the status reverts to the status that was in effect before

the call. (Solver-specific foreign interface predicates must also be backtrackable.)

Errors

The following errors can be raised for any of the normal interface predicates. They will not be repeated in the

individual descriptions. Note that all errors described in this chapter are raised by the CLP organizer

component of the runtime system (core); the individual solvers can raise additional errors.

system_error

The runtime system does not include the CLP extension. Other_info contains the atom

clp_extension_is_excluded_from_this_runtime.

domain_error(installed_clp_solvers, Sid)

There is no solver configured in the system that would match Sid.

clp_system_error

No solver is configured in the CSP runtime system. Other_info contains the atom no_solver_is_installed.

clp_system_error

The called normal interface predicate is not supported by the currently selected solver. Other_info contains the atom

solver_does_not_support_this_predicate.

clp_system_error

The selected solver cannot be run in the current CS-Prolog process either because of some conflict with an instance of an

other solver already running in the process, or because the selected solver does not support multithreading and already has

a running instance in an other process (depending on features specified in the configuration table). Other_info is a

two-item list where the first item is the atom cannot_create_solver_instance; the second item is one of the

atoms second_instance_of_non_multithreaded_solver,

thread_is_monopolized_by_another_solver, or

this_solver_must_run_in_a_thread_alone, to describe the particular conflict type.

Built-in predicates

202

clp_system_error

Programming error related to the internal interface between the CLP organizer and the selected solver. Other_info

contains a list of the form [internal_error,ErrCode], where ErrCode is an integer code specifying the

particular error detected (these errors should not occur in connection with a debugged solver; they are designed to help the

development process). The meaning of the currently used codes are summarized in the following table:

ErrCode Cause

1710 sign_on called before instance initialization

1720 Missing sign_off (2nd sign_on call with same sid)

1730 Missing sign_off from an other solver (2nd sign_on call with different sid)

1740 sign_off without sign_on (no solver is current)

1750 sign_off without sign_on (other solver is current)

1800 Invalid solver ID encountered

1820 2nd arg of remove_last_restr_vars is too big (greater than the number of ‘live’ c-vars)

1850 put_data_on_trail request from unidentified solver

1855 Invalid trail note request (backtrack inhibited)

1885 1st arg of restr_var_ind callback is not a constrained variable

1890 1st arg of mk_restr_var is not an unbound variable

1891 3rd arg of mk_restr_var (problem variable index) is not less than

CLP_MAX_SOLVER_VARS (2048 at present)

1892 The number of currently ‘live’ problem variables for the solver exceeds

CLP_MAX_PROBLEM_VARS (1024 at present)

NOTES:

 If the solver’s implementation contains errors in specific components, then CLP-related error

exceptions can be raised during backtracking, too. In this case, the Goal component of the additional

information associated with the exception indicates the predicate call that triggered the backtracking

by failing; most probably, this call is not directly related to the error condition.

 Some internal errors also might be reported for calls attempting unification where a constrained

variable is involved.

query_clp_config/4

Description

query_clp_config(Sid, Name, Coop, IsMultiThreading)

For each solver configured in the runtime program this resatisfiable predicate unifies the arguments with

attributes of the solver in the following way:

Sid is unified with the numeric identifier assigned to the solver (the 0-based index of the entry in the

configuration table).

Name is unified with the mnemonic name specified in the configuration table.

Coop is unified with an atom that characterizes the ‘cooperativeness’ of the solver, from the set monopolistic

(must run alone in a thread), xenophobic (does not recognize ‘alien’ constrained variables – the system must

pre-filter all expressions), tolerant (recognizes and rejects alien constrained variables), cooperative (can handle

alien variables).

IsMultiThreading is unified with either the atom true (if the solver is prepared to run in several instances) or

the atom false (if it can run only in one CS-Prolog process).

The attributes of each installed solver are enumerated on backtrack.

Chapter 31: Predicates for the CLP extension

203

Template and modes

query_clp_config(?term, ?term, ?term, ?term)

Examples

query_clp_config(Id, Name, _, _),

 format(’Installed solver: Id=~d, Mnemonic name=’’~a’’’~n’, [Id, Name]),

 fail.

Writes the identifier integer value and the mnemonic name of each installed solver to the current output, on

separate lines, and finally fails.

query_clp_config(0, _, _, true).

Succeeds if there is at least one solver configured in the runtime program and the default solver (with

Sid = 0) supports multithreading, otherwise fails.

Errors

None

select_clp_solver/[0,1]

Description

select_clp_solver

is equivalent with

select_clp_solver(0)

select_clp_solver(Solver)

This predicate is entirely implemented by the core system. It can be used by the program for selecting the

solver for which the ensuing normal interface predicate calls (in ‘forward’ execution, within the same

CS-Prolog process) should be dispatched. The Solver argument can be an integer for the SolverId (SolverIds

are consecutive integers from 0 to N – 1, where N is the number of configured solvers), or an atom containing

the symbolic name of the desired solver, specified in the configuration table entry. SolverId-s are essentially

the index values for selecting the configuration table entry. The first entry (indexed by 0) is for the ‘default’

solver.

At the start of each process, the default solver (if there is one) is selected implicitly for the process.

The predicate is backtrackable.

Template and modes

select_clp_solver

select_clp_solver(+atom_or_integer)

Examples

select_clp_solver(ml_solver).

Succeeds if there is a solver configured with mnemonic name ml_solver in the system; otherwise an

exception is raised. After successful execution the ensuing normal interface predicate calls (in forward

execution) will be directed to this solver.

select_clp_solver(1).

Selects the second installed solver (with SolverId = 1) as target for the ensuing normal CLP interface calls.

Succeeds if there are at least two solvers configured in the system; otherwise an exception is raised.

Errors

instantiation_error

The Sid argument is an unbound variable.

Built-in predicates

204

clp_constraint/1

Description

clp_constraint(ConstrList)

This is the central element of the CLP interface, used for defining constraints for the currently selected solver.

ConstrList is a list of structures (specific for the solver involved), each structure representing one constraint.

For example, the ML linear solver accepts structures where the main functor is one of (=:=) /2, (=<) /2, or

(>=) /2, and the arguments of each structure are CLP linear expressions.

The solver analyzes the constraints contained in ConstrList, decides whether they are syntactically correct and

if so, whether adding them to the current set of constraints yields a consistent state.

If any error is detected, then an appropriate error is raised.

Otherwise, if the new set of constraints is inconsistent with the current status, then the call fails.

If no error is detected and the new constraints are accepted, then the call succeeds. Unbound variables

encountered in the new constraints become constrained variables (corresponding to new problem variables).

The predicate is backtrackable. After backtracking over the call the status of the model maintained by the

selected solver instance reverts to the status that was in effect before the call.

Template and modes

clp_constraint(+list)

Errors

instantiation_error

The ConstrList argument is an unbound variable.

type_error(list,ConstrList)

ConstrList is not a list.

domain_error(valid_formula_for_clp_solver,ConstrList)

There is an ‘alien’ constrained variable inside ConstrList and the currently selected solver is described as xenophobic.

Other_info is a list of two atoms: [SolverName, constrained_variable_for_other_solver],

where SolverName is the mnemonic name assigned to the selected solver.

clp_type/[2,3]

Description

clp_type(Expr, Type)

is equivalent with

clp_type(Expr, Type, _)

clp_type(Expr, Type, Extra)

Expr should be an expression recognized by the solver, not containing unbound variables. The solver qualifies

the expression (based on the current status of the constrained variables occurring in it), and returns an atom

representing the result of the classification. The returned value is unified with Type. If any useful additional

information can be appended, it will be unified with Extra as a list.

For example, the ML solver accepts CLP linear expressions, and returns one of the following atoms for Type:

free, lobnd, upbnd, bounded, fix, number, where number means that Expr is a fully evaluable arithmetic

expression (with constant value), the other categories correspond to value ranges like the ones described for the

possible states of constrained variables.

Template and modes

clp_type(+term, ?atom)

clp_type(+term, ?atom, ?List)

Chapter 31: Predicates for the CLP extension

205

Errors

instantiation_error

The Expr argument is an unbound variable.

type_error(clp_evaluable_expression,Expr)

Expr is a symbol or a list.

domain_error(valid_formula_for_clp_solver,Expr)

There is an ‘alien’ constrained variable inside Expr and the currently selected solver is described as xenophobic.

Other_info contains the atom constrained_variable_for_other_solver.

clp_max/[2,4]

Description

clp_max(Expr, Value)

is equivalent with

clp_max(Expr, Value, [], _)

clp_max(Expr, Value, Query, Answer)

Expr should be an expression recognized by the solver, not containing unbound variables. The solver attempts

to calculate the maximal value that the expression can assume subject to the current set of constraints. If the

maximum does not exist (the expression has no upper bound) then the call fails, otherwise Value is unified

with the calculated maximal value. The Query argument can contain solver-specific query items (one item, or

a list of items) about the solution of the current set of constraints corresponding to the maximum found.

Answer is unified with the item, or with a list of items, that supply the answers to the query item(s) contained

in Query (see also clp_value/2).

Template and modes

clp_max(+term, ?number)

clp_max(+term, ?number, +term, -term)

Errors

instantiation_error

The Expr argument is an unbound variable.

type_error(clp_evaluable_expression,Expr)

Expr is a symbol or a list.

domain_error(valid_formula_for_clp_solver,Expr)

There is an ‘alien’ constrained variable inside Expr and the currently selected solver is described as xenophobic.

Other_info contains the atom constrained_variable_for_other_solver.

clp_min/[2,4]

Description

These predicates are essentially the same as clp_max/[2,4] above, considering the equivalence

min { f(x) } == - max { -f(x) }

Template and modes

clp_min(+term, ?number)

clp_min(+term, ?number, +term, -term)

Errors

instantiation_error

The Expr argument is an unbound variable.

Built-in predicates

206

type_error(clp_evaluable_expression,Expr)

Expr is a symbol or a list.

domain_error(valid_formula_for_clp_solver,Expr)

There is an ‘alien’ constrained variable inside Expr and the currently selected solver is described as xenophobic.

Other_info contains the atom constrained_variable_for_other_solver.

clp_value/2

Description

clp_value(Query, Answer)

Query is an expression recognized by the solver, not containing unbound variables, or a list of such

expressions. If Query is a structure (one expression), then the solver evaluates the expression, substituting

values for the constrained variables in the expression from the feasible solution maintained as part of the

current state, and unifies Answer with the result of this evaluation.

If Query is a list of expressions then the solver builds a corresponding list of results evaluating each

expression as in the previous case, and unifies Answer with this list.

Template and modes

clp_value(+struct_or_list, ?number_or_list)

Errors

instantiation_error

The Query argument is an unbound variable.

type_error(clp_evaluable_expression,Flags)

Query is a symbol.

domain_error(valid_formula_for_clp_solver,Query)

There is an ‘alien’ constrained variable inside Query and the currently selected solver is described as xenophobic.

Other_info contains the atom constrained_variable_for_other_solver.

clp_debug_mode/1

Description

clp_debug_mode(Flags)

Passes the value of Flags to the selected solver. The intent of this predicate is to give the user program some

control over any debugging facility provided by the specific solver.

This predicate is not considered as ‘significant’ (does not activate the solver instance in the CS-Prolog process

if it is not activated yet; the Flags value is saved for later instead), and is not backtrackable.

Template and modes

clp_debug_mode(+non_negative_integer)

Errors

instantiation_error

The Flags argument is an unbound variable.

type_error(integer,Flags)

Flags is neither an integer nor an unbound variable.

domain_error(not_less_than_zero,Flags)

Flags is a negative integer.

PART IV

CS-Prolog development system

Chapter 32: Files and directories

209

32. Files and directories

The CS-Prolog development system incorporates four programs and several other data files. The compiler

compiles a CS-Prolog module into a binary module format. The linker connects several binary modules into a

binary program file. This binary program file can be executed by the runtime system. The programming

environment incorporates the previous three programs, making comfortable the process of programming. If

the modules are compiled and linked using a special option, the CS-Prolog program can be debugged with an

interactive trace facility.

The names of the CS-Prolog components are:

cspcomp - the compiler

csplink - the linker

csprolog - the runtime system

cspenv - the programming environment

The components of the CS-Prolog development system use several data files. In order to be able to find them,

these files must reside in a directory that is known by the system. This directory is called csphome and the

system is informed about the name of csphome through an environment variable CSPHOME. Therefore,

before the first use of a CS-Prolog component, this environment variable has to be set (in an operating system

dependent way) to the directory name of csphome directory. If this environment variable is undefined, the

system searches the files in the current working directory.

The data files used by the CS-Prolog system are:

xxpro.blt

A text file with the list of built-in predicates. It is required by the compiler.

standard.mdf

A binary module containing the standard module. It is required by the linker.

csptrace.mdf

A binary module that contains the debugger module. It is required by the linker (only if debug is

wanted).

prolint.pdf

A binary program called within the environment.

The user can extend CS-Prolog with his or her own built-in predicates written in C. The system files of the C

interface are:

csprolog.h

The C header file.

csprolog.EXT

The CS-Prolog library (EXT is the (system dependent) extension for libraries).

extname

Executable program for printing out the converted identifier if a CS-Prolog predicate name is not

a valid C identifier (see section 38.1).

The output files of the compiler and the linker are system independent. That means that any binary module or

binary program file can be ported to another machine and used there.

CS-Prolog development system

210

33. Compiler

The compiler compiles a CS-Prolog source module to a binary module format. The compiler has two passes. In

the first one is performed the syntactical and semantic check. The second pass generates the binary module

code.

The compiler can be executed with a following command issued in the host operating system:

cspcomp source [opt_list]

source is the file name of the source CS-Prolog module. The default extension for Prolog files is pro, if source

has no extension this default is used. A successful compilation generates a binary output file (input file of a

subsequent linkage). The extension of this generated file is mdf. The file name (without extension) of the

generated file is that of source, unless a specific option is given. opt_list is a sequence of valid compiler

options; this can be omitted if there are no options needed.

If the compiler detects an error in the source code, an error message is written to the standard output. There are

three types of errors. If a fatal I/O error occurs (e.g. there is no file with the given name), the compilation is

aborted. If a syntax error or a semantic error is found, no code is generated but the whole source file is

processed. The errors are listed in Appendix A. Error messages have the following format.

For syntactic errors:

source(line_number): error number : error_text

For semantic errors:

error number : error_text

A syntax error means that a term in the source file violates the rules of CS-Prolog term or module syntax (see

chapter 1). Semantic error is signaled if there are defined contradicting definitions for a predicate e.g. a functor

is declared as dynamic and imported simultaneously. If a clause is very large or too complex, it can cause a

code generation error.

The compiler performs a very useful check for undefined predicates. In CS-Prolog, the undefined calls are

assumed as calls of dynamic predicates that will be created during runtime. In many cases, however, such

undefined calls are consequences of some clerical error. Therefore the compiler displays a warning for these

calls, but this warning does not have effect on the success of the compilation. (If the warnings are not needed,

they can be suppressed.)

The valid options of the compiler are:

-ptrace

Generate code that enables the CS-Prolog debugger to set breakpoints in this module. (The trace

facility can handle modules compiled without this option if the program is linked with ptrace

option).

-fo filename

Generate output file in filename. If filename terminates with a path separator character (/

or \) then it must be a directory name, and the output will be placed in this directory using the

name of the source and the default extension (mdf). Otherwise filename is interpreted as a

file name, if it does not have an extension, the default extension is suffixed.

-nopp

Do not use the preprocessor.

-nocode

Do not generate code file. Only syntax and semantic check is performed.

-noch[eck_singleton]

Do not check singleton variables. Without this option specified the compiler generates a warning

message if a non-void variable appears only once in a clause. Variables beginning with _

(underscore) are not subject to this check. The option name can be abbreviated as indicated.

-now[arn]

Do not write warning messages. The option name can be abbreviated as indicated.

Chapter 33: Compiler

211

-P

Perform only preprocessing, the preprocessed source is written out to a file with extension i. (A

source.i file is created.) Neither syntax checking, nor semantic checking, nor code generation is

performed.

Several options affect only the preprocessor. These are:

-Dmac=value

Defines a macro with name mac and body value. If the =value is omitted the macro is

defined as the text 0 (zero).

-Idir_name

The directory dir_name is prefixed to the list of directories where include files are searched.

-M

The pathnames of the source file and of all the included files (direct or indirect inclusion) are

written to the standard output. This feature helps, e.g., in finding dependencies when a make

script is prepared.

The compiler needs some data files as it is described in chapter 31.

CS-Prolog development system

212

34. Linker

The linker links several compiled binary CS-Prolog modules into a binary program file. This file can be

executed by the runtime system. The linkage is done in two passes. In the first pass the export/import interfaces

are checked, the appropriate predicates are connected, and the symbols of modules are merged into a common

table. In the second pass the binary program file is generated. If there are foreign directive(s) in some modules,

an additional file (C source) is generated (see chapter 38. describing the C interface).

The linker can be executed with a following command issued in the host operating system:

csplink [options] mod1 mod2 ... modN [,prog_name]

mod1, mod2, ..., modN are usually the file names of module files to be linked. They have a default extension

(mdf); they should be files generated by the compiler. prog_name is the file name for the program binary

file. If prog_name is omitted, then the name of the first module (mod1) is used (without extension) by

default. The output file also has default extension (pdf), so normally a prog_name.pdf (or mod1.pdf) file is

created.

If any of the mod1, mod2, ... , modN arguments begins with the distinguishing character @ then it specifies an

indirect input file called response file containing additional arguments. The @ is not part of the file name.

A response file can contain arguments of the same form as allowed for direct command line arguments except

that further indirection is not handled, and layout characters including newline can be used freely. The effect of

a command line containing response file arguments is the same as if these arguments were replaced by the

content of the corresponding response files except for line size limitation (included newline does not terminate

the command).

The fatal I/O errors abort the linkage. If there are other linkage errors found, they are written out to the

standard output and no program code is produced. All input modules must have been compiled with a version

of the CS-Prolog compiler compatible with the linker version and the standard module version used. The

linkage errors are listed in Appendix B.

Options can appear anywhere in the argument list. The valid options of the linker are:

-ptrace

Generate code that enables the CS-Prolog debugger to trace the program. (It means including a

special module for tracing in the generated program.)

-nocr

Suppresses the display of the copyright notice by the linker.

Chapter 35: Runtime system

213

35. Runtime system

The runtime system executes the CS-Prolog binary program files created by the linker. The main goal of the

program (main_goal/[0,1]) is invoked after loading the program file. The termination of a CS-Prolog program

can be successful, unsuccessful or caused by an unhandled exception. If all processes of the program terminate

with success, it means the successful termination of the whole program and no message appears. If some of the

processes fail, the system writes out a warning message. If an unhandled exception occurs, the system writes

out the error term and breaks the execution.

The runtime system can be executed with a following command issued in the host operating system:

csprolog [opt_list]

opt_list is a sequence of valid runtime options; this can be omitted if there are no options. The CS-Prolog

program to be executed is given with an option (cspprog).

The memory used by the Prolog system is determined in the beginning of the execution (can be modified with

an option, see later). This limitation can cause a runtime error resource(memory) if all memory is used up.

Therefore, it is essential to specify the amount of memory needed correctly, since it cannot be changed during

execution. The memory available for the system is divided into two parts. First part is used by the main stacks

of the processes. The second part is used for the symbols, floats, dynamic clauses, values and channels and

messages created during the execution. The deeper is the recursion of the program the more memory is needed

for the main stacks, the more data (listed above) are created the more memory is needed for them. So the

division of the memory can be essential too, as this partitioning is decided in the beginning of the execution

and cannot be changed later.

The runtime system accepts several options. Each runtime option has a name. Some of them also take a value;

others have no value, only their presence or absence conveys the intended meaning (switches). The options can

be specified in two different ways, either on the command line or in operating system environment variables.

If specified on the command line, a value taking option can be given as:

-Option_name=Option_value

or

-Option_name Option_value

If using the environment, the variable has to be named Option_name (upper case) and set to value

Option_value. The command line option overrides the value set in then environment. On the command

line the Option_name is case-insensitive, but the corresponding environment variable name has to be

written always in upper case. Otherwise the form is similar except for the ’-’ character introducing the

command line options (distinguishing them from the regular arguments passed to the program).

The options which need no value (switches) can be given on the command line simply with their name:

-Option_name

To set these options in the environment, a special variable named CSPOPT is used. Its value should consist of

switch names separated by colons.

The valid options that have a value are:

cspprog=Binfile

cspmem=Number

gcstat=Number

The valid switches are:

ptrace

mintables

medtables

ver

h[elp]

With the cspprog option it is defined the binary program file to be executed by the runtime system. The

extension pdf can be omitted. So to execute a program called hello.pdf the following options can be used:

-cspprog=hello

-cspprog hello

CS-Prolog development system

214

Alternatively, the user can set the variable CSPPROG (in a machine dependent way) to the value hello. The

default value for this option is csppr.pdf.

The cspmem option specifies the amount of memory to be used by CS-Prolog. The default (if the option is not

present) is machine dependent, on processors that support virtual memory management, it usually is 2048

Kbytes. The Number value of this option has to be an integer; it is interpreted in Kbytes.

The ptrace option requests Prolog trace, i.e., the runtime system will activate the interactive trace facility.

However, the trace can be accessed only if the program had been linked with the same option. The trace can

debug modules compiled without the ptrace option, but in this case the user cannot set breakpoints. (For the

description of the interactive trace facility see chapter 37.)

The gcstat option activates a simple profiling tool that prints out a short summary of resource usage before

and after garbage collection is performed. The Number value of this option regulates the frequency of this

printing. Number = K means that each K-th garbage collecting action will be reported. Number = 0 disables

this facility (the same as omitting the option).

The medtables and mintables options specify the ratio of division of the available memory between the

main stacks and the other data. If neither of them is present, the ratio is the following: 70% for the main stacks

and 30% for other data. Specifying the medtables option changes this ratio to 50%-50%, and with

mintables the ratio will be 30%-70%.

The ver (version info) option causes the printing of version identification data on the standard error stream.

The special h[elp] option causes the printing of a brief summary of the command line syntax and the

available options. All other command line arguments are ignored, and the execution is terminated immediately

after the printing. Any valid abbreviation of the help keyword is accepted.

If the main goal of the CS-Prolog program has arity 1, the system calls this main_goal/1 predicate with a list

argument composed of the regular (non-option) command line arguments. All command line arguments that

begin with a minus sign character, and cannot be interpreted as a negative number, are treated as options —

information for the runtime system itself. Arguments representing integer numbers are converted to CS-Prolog

integers; all other arguments will be passed as atoms.

Example: the command

csprolog -cspprog test1 -cspmem 4000 foo bar -2 0 -ptrace

calls the CSP-II runtime system, which will first try to load the binary file test1.pdf, then synthesizes and

performs the following call (in interactive debugging mode):

main_goal([foo, bar, -2, 0]).

The system will use 4 megabytes of memory if the operating system allows.

Chapter 36: Programming environment

215

36. Programming environment

The programming environment combines the components of the CS-Prolog system. It permits to define

CS-Prolog programs, to generate code for them, to run and to debug them. It does not incorporate a text editor;

it is assumed that the source modules are written and modified with an editor existing on the host machine. On

operating systems with multitasking possibilities, the editing can be performed by another task, independently

from the CS-Prolog environment.

The environment creates a so-called make file for every CS-Prolog program. Executing the make utility of the

operating system, supplying this make file, will invoke the CS-Prolog compiler and the linker. The user does

not need to know anything about make files since the environment applies them automatically. Not all

operating systems provide a make utility. The environment is able to compile and link the program without

invoking a make utility if an appropriate option is set.

In the CS-Prolog environment there is always a so-called actual CS-Prolog program. If a command in the

environment is issued without parameter, it will be interpreted as a command for the actual program. A

command with a program name argument or an explicit define command changes the actual program.

The environment allows setting the command line options for the component programs. By default, the system

generates code with trace information. It is also possible to change the name of the Prolog runtime system

used, if the user created an extended CS-Prolog runtime system with the external C interface.

The environment system can be executed with a following command issued in the host operating system:

cspenv [prog_name]

prog_name is an optional argument. If it is present, the system executes a

make prog_name

command in the beginning, so sets prog_name to be the actual program, compiles and links the modules if

the program is not up to date. See the next chapter for the description of the make environment command.

Some options can be changed in the environment (see the set command). When the user quits the

environment and there were changes in some options, the system creates a so-called init file with extension ini,

in the current working directory, and stores the changed options in this file. If such an init file is found in the

directory the environment is invoked from, the previous options are automatically restored.

36.1 Environment commands

The commands can have optional arguments. In this description, the optional arguments are enclosed in

brackets ([]). Every command can be abbreviated. The part of the command name which is after the

abbreviation is enclosed in curly brackets ({}).

d{efine} [prog_name]

Defines the actual CS-Prolog program as the target of the development. prog_name is a file name for the

program binary file without extension. If prog_name is omitted it is asked interactively

The command prompts first for the program name if it is not supplied as an argument. If there is a make file

found for this program, the environment assumes that the program is already defined. (To define an existing

program with modified module names see redefine command.)

If there is no make file for the program, then the module names constituting the program are asked. These

names are file names, not the Prolog module names inside the files. To finish the definition after the last

module name, an empty line should be given. If the program consists of a single module with the same name

(and pro extension) as prog_name, then when the first module name is asked, an empty line should be

entered.

When the definition has terminated the environment creates a make file for the program (if it is not yet

present). The name of the make file is prog_name.mak.

If an existing make file is used the system checks if the program is up to date, or the modules have to be

compiled and linked because they have been modified since the last compilation.

CS-Prolog development system

216

re{define} [prog_name]

Performs the same task as the define command, with the difference that module name(s) are requested even if

there is a make file present for prog_name. Therefore, an existing program can be redefined to contain new

module(s).

m{ake} [prog_name]

Generates code for the program prog_name or the actual program. If the prog_name argument is present

then an implicit define command is executed. Code generation means the compilation of (modified) modules

and the linkage if the compilation(s) were successful.

r{un} [prog_name]

Executes the actual program or the program prog_name. If the prog_name argument is present, an implicit

make (and eventually define) command is executed. The execution is without trace.

tr{ace} [prog_name]

Executes with the trace facility the actual program or the program prog_name. If the prog_name argument

is present, an implicit make (and eventually define) command is executed. For the description of the

interactive trace see chapter 37.

p{rolog}

Executes a special CS-Prolog program. This program simply reads a term - a Prolog goal - and executes this

goal. Displays the success or the failure of the execution, and, in the successful case, writes out the

instantiation(s) of the variable(s) of the goal. It is possible to ask for another solution, that is, force the system

to backtrack into the goal and display if it can succeed once more.

To give a Prolog goal at the ?- prompt, simply type in the goal terminated with a period (end token). When a

solution is displayed (the variable bindings are written out), the system waits for input. Type in a semi-colon

(;) character to have a new solution, pressing Enter finishes the execution of the goal.

If an exception occurs in the goal, the programs writes out the error term, breaks the execution and returns to

the ?- prompt.

There are some special goals in this program:

trace.

The subsequent goals will be traced with the interactive trace.

notrace.

The subsequent goals will not be traced with the interactive trace. (This is the default.)

load_file(FileName).

Reads in a text file FileName containing a (part of) a CS-Prolog module. All directives are

ignored except the operator directives. No modules are created; all clauses are added into the

module where the interactive trace is defined. Since there is already a main_goal in the

program, an eventual main_goal/[0,1] predicate is renamed to main__goal/[0,1]

(with double underscore in it). The added predicates will be dynamic and not static.

quit.

Terminates the program.

h{elp} [command]

Gives general help information or help on a specific command.

q{uit}

Terminates the environment.

set c{ompopt} OPT

set l{inkopt} OPT

set r{unopt} OPT

Sets command line options for the compiler, linker or the runtime system. The default is for compiler and for

the linker:

-ptrace

For the runtime system, if it is executed by trace command, the same option is given. For non-tracing

execution there is no default command line option.

Chapter 36: Programming environment

217

set p{rolog} prolog_file

Sets the name of the runtime system to be called by the run or trace command. By default it is csprolog,

but if the user creates a new runtime system with the external C interface, its name can be set with this

command.

set m{ake} [make_name]

Sets the name of the make utility to be used by the make command. If make_name is omitted, no make utility

will be used; the compilation and linkage will be invoked from the environment directly. On operating systems

where there is provided a make utility the default value is make, on operating systems where there is no make

utility the default is the direct invocation.

st{atus}

Prints out the name of the actual program, the module names, and the actual values of the options.

CS-Prolog development system

218

37. Debugging

The CS-Prolog trace facility uses the so-called box model to represent the flow of control through a Prolog

predicate. This model visualizes the Prolog predicates as boxes with two entry ports and two exit ports, through

which the control may pass.

In this figure, the box represents a Prolog predicate (with some clauses). The arrows indicate the direction of

the flow of control through the ports. The characters >, +, < and - are the symbols of the four ports named

call, exit, redo and fail.

The call port represents the initial invocation of the predicate. The exit port represents the successful

satisfaction of the predicate. The redo port represents the backtracking into the predicate after a failure in

order to find an alternative solution. The fail port represents the failure of the predicate, when the backtracking

continues.

When tracing a predicate in the CS-Prolog interactive trace the call is displayed in all four ports. On the entry

port the execution stops, the trace waits for a trace command. A predicate can defined to be a break point. It

makes possible to execute the program without trace until a call is reached and then to continue with tracing.

The following trace commands can be given. The commands can be abbreviated, the part of the command that

is not needed is enclosed in curly brackets ({}).

{trace}

Single step execution. Trace will stop at the entry port of the predicate called next. (The

abbreviation of this command is a simple Enter key.)

s{kip}

Skip the trace of the current call. Trace will stop at the entry port of the predicate called next,

after the termination (successful or failed) of the current call.

g{o}

Go without trace. Trace will stop at the entry port of the next break point.

b{reak} Functor

Set break point at the predicate with functor Functor. Functor can contain a module prefix,

if it doesn't, the predicate is searched in the current module. If the arity part of the Functor is

omitted (it is an atom), then the predicate with this name which is found first, is set to be a break

point. The Functor has to be in a single line.

Important note: on multiprocessor environments setting a break point means setting it on the

actual processor. Therefore, a process running on an other processor will not stop on this

predicate. Since dynamic predicates are local to a process, the break points on dynamic

predicates are local to a process as well.

c{lear} Functor

Remove break point. Functor has to be given in the same way as in the previous command.

The predicate with functor Functor will not be a break point any longer.

q(uit)

Abort the execution.

p{rolog}

Enter Prolog mode. Offers the same facility as the environment command prolog, described in

the previous section. So CS-Prolog goals can be executed. To set the module where the goals are

interpreted use a module prefix or the

defmod(Mod_name).

special goal. After executing this call, all subsequent goals will be invoked in the module

Mod_name.

Prolog predicate

> call + exit

< redo - fail

Chapter 37: Debugging

219

The trace indicates in its output the processor and the process where the goal is running. This information has

format Pr/Ps displayed after the traced call, where Pr is the sequence number of the processor and Ps is the

sequence number of the process. The processor part is omitted if the process runs on the main processor, and

everything is omitted in case of the main process.

CS-Prolog development system

220

38. The C interface

The CS-PROLOG system provides the means for writing user-defined built-in predicates in C language

(foreign predicates). A special C function set is supplied for accessing arguments, unifying, etc. A C function

can be called from a CS-Prolog program if the user performs the following:

Writes and compiles his or her own C source(s) using the header file csprolog.h, generating

some C object file(s).

Adds foreign directive(s) to the Prolog source(s) for each foreign predicate referenced, and

compiles the Prolog source(s).

Links the CS-Prolog program (the linker automatically will generate a C source file with name

cspfor.c).

Compiles the cspfor.c source generated by the linker, creating another C object file.

Links the C object files with the CS-Prolog library to create a new version of the runtime system,

containing the new predicate(s).

In this section, a basic knowledge of the C programming language is assumed.

An essential restriction for the implementation of such built-in predicates is that the C representation of

CS-Prolog terms must not be saved in global variables by the program for later use. This representation may

contain pointers that become invalid during garbage collection (the garbage collection procedure is not aware

of these stored terms). In special cases (backtrackable and non-deterministic predicates), the C interface gives

the possibility of storing and retrieving CS-Prolog objects from internal stacks.

38.1 The prototype of the C function

The name of the C function implementing a Prolog built-in predicate is derived from the functor of the

predicate, connecting the name and the arity with a _c_ character sequence. Therefore, if a functor

Name/Arity is declared as a foreign predicate (see section 1.2.1), the name of the corresponding C predicate

should be:

Name1_c_Arity

This C function must not have arguments, and has to return an integer. For a foreign predicate plus/3 the

prototype of the C function to be written is:

int plus_c_3(void);

(In some non-ANSI C implementations, the void keyword has to be omitted.)

If the predicate name Name is not longer than 25 characters and constitutes a valid C identifier then Name1 is

the same as Name. Otherwise, Name1 is an artificially constructed identifier. The utility program extname

can be used to obtain this identifier. This program reads a line from the standard input and prints out the

converted identifier on the standard output. If the CS-Prolog name is a valid C identifier, this identifier is

printed. The names of external C predicates can also inspected in the file cspfor.c generated by the linker

(the names are listed as initializer values for the elements of a C array).

Note that, at present, the linker automatically generates the cspfor.c file each time when a program

containing at least one foreign directive is linked. This file lists only those predicates that are actually

mentioned in the program, so the customized runtime system produced using this file will know about these

predicates only. An alternative is to prepare a dummy CSP source module that lists all foreign predicates

implemented by the user as a package, to prepare the runtime program using the cspfor.c file produced by

compiling and linking this dummy source, and to ignore the cspfor.c files generated for the ‘real’

programs. The runtime in this case will accept foreign calls to a superset of those needed for individual

programs.

The arguments of the Prolog predicate can be accessed inside the body of the C functions through interface

functions described in the next section.

Chapter 38: The C interface

221

A special type named CspRetC is defined (as integer) for the values returned by the functions. Two special

return values of the C function indicate the success or the failure of the predicate. Any other return value raises

the corresponding exception.

38.2 Basic C definitions

The C source file implementing user-defined builtin predicates normally should include the following header

file shipped with the distributed system

#include "csprolog.h"

This file defines the basic Prolog structures, interface functions, and some data items.

The basic data type for the internal data representation of CS-Prolog is

xxp_cell

Every Prolog term in C has the type xxp_cell. There is a special xxp_cell denoting the empty list, it is defined

by a macro. Its name is

XXP_NIL

The actual Prolog term represented by the current content of an xxp_cell as seen in the external C module can

be classified into one of the following categories: unbound variable, integer number, float number, atom, list,

or structure (non-list compound term). The symbolic values (macro names) for these categories are:

XXP_T_EMPTYREF

XXP_T_INT

XXP_T_FLOAT

XXP_T_SYMB

XXP_T_LIST

XXP_T_STRUCT

The version of CS-Prolog extended for CLP support (Constraint Logic Programming) defines an additional

term type, the so-called constrained variable, which belongs to the category denoted by the symbol

XXP_T_RESTR

Prolog integers can be retrieved in C as long integers, float numbers as double-s.

A special data type,

CspRetC

is defined for the values returned by the built in predicates (and some other functions).

The CspRetC values for indicating the success or failure of the built-in predicate are:

XXP_E_SUCCEED

XXP_E_FAIL

The C function has to return XXP_E_SUCCEED if it succeeds, and XXP_E_FAIL to indicate failure. Any

other value is interpreted as an error signal that causes the raising of the corresponding exception.

There is another type definition

CspFloatType

for the floating-point value representation used by the system (at present it is a synonym for the type double).

The header file contains prototypes for the C functions provided by the CS-Prolog runtime system. If the macro

__STDC__ is defined (possibly by the C compiler) the prototypes are ANSI C compatible.

38.3 The C interface function set

38.3.1 Functions accessing Prolog terms

xxp_cell xxp_arg(int arg_no);

Returns the arg_no-th argument of the built-in predicate. The arguments are numbered, as in

Prolog, from 1.

CS-Prolog development system

222

int xxp_type(xxp_cell cell);

unsigned xxp_raw_type(xxp_cell cell);

Returns the type of cell:

XXP_T_EMPTYREF unbound variable

XXP_T_RESTR constrained variable (only with CLP extension)

XXP_T_INT integer

XXP_T_FLOAT floating point number

XXP_T_SYMB atom (symbol)

XXP_T_LIST list

XXP_T_STRUCT compound term (not list)

The main difference between these two functions is that for the empty list (XXP_NIL) they return

different values: xxp_type returns XXP_T_LIST while xxp_raw_type returns XXP_T_SYMB.

The type of the returned value is also different (but the returned values are always non-negative for

xxp_type, too).

The following C functions have an xxp_cell argument and return some information. All work only on a special

type of cell (e.g. cell representing an integer or an atom). However, since no check is provided, if called with

an inappropriate argument, the function will return false information. Therefore, it is very important to check

the type of the cell before calling one of these functions.

long xxp_int_val(xxp_cell cell);

Returns the integer value of cell representing a Prolog integer. Works properly only for cells of type

XXP_T_INT. (It is a macro, not a function.)

CspFloatType xxp_float_val(xxp_cell cell);

Returns the floating-point value of cell, representing a Prolog float number. Works properly only

for cells of type XXP_T_FLOAT. For other types, an exception is raised internally.

CspFloatType xxp_checked_float_val(xxp_cell cell, unsigned argpos, CspRetC *rcp);

This is the generalized variant of the function xxp_float_val above; enables the caller to handle an

eventual error directly. The second argument, argpos, specifies the argument position to be

indicated in the error term in case of error. The behavior of the function depends on the value of the

return code pointer rcp. If rcp is NULL then this function acts like xxp_float_val (except for the

more specific argument position indication for error). Otherwise, when rcp is different from NULL,

then the function either returns the floating-point value of the Prolog float number represented by of

cell, and puts XXP_E_SUCCEED into the variable pointed at by rcp, or, when the type of cell is

improper or some other error occurred, returns 1.0 (as a least harmful default), and places the code of

the prepared exception into *rcp.

char * xxp_symb_chars(xxp_cell cell);

Returns a pointer to the characters of cell representing a Prolog atom. Works properly only for cells

of type XXP_T_SYMB. The pointer returned points into the internal Prolog data array. So the program

should use the pointer only for accessing the characters, never should change the data.

xxp_cell xxp_list_head(xxp_cell cell);

Returns the head of cell representing a Prolog list. Works properly only for cells of type

XXP_T_LIST.

xxp_cell xxp_list_tail(xxp_cell cell);

Returns the tail of cell representing a Prolog list. Works properly only for cells of type

XXP_T_LIST.

xxp_cell xxp_struct_functor(xxp_cell cell);

If type of cell is XXP_T_STRUCT then returns the name (principal functor) of the structure

represented by cell. The returned cell represents an atom (symbol), but also contains information

about the arity of the functor. It can be compared with a functor created with xxp_mk_functor

function. If the type is XXP_T_LIST then returns the dot functor (’.’)/2 which corresponds to the

symbol ’.’. For any other type, the function returns the cell argument itself.

Chapter 38: The C interface

223

unsigned xxp_struct_arity(xxp_cell cell);

If type of cell is XXP_T_STRUCT then returns the arity of the Prolog compound term represented

by cell. If the type is XXP_T_LIST then returns 2, corresponding to the dot functor (’.’)/2. For

any other type, the function returns 0.

xxp_cell xxp_struct_arg(int argno, xxp_cell cell);

If type of cell is XXP_T_STRUCT then returns the argno-th argument of the Prolog compound

term represented by cell. The arguments are numbered beginning with 1, up to the arity of the

structure. If the type is XXP_T_LIST then for argno = 1 returns the head of the list represented by

cell; for argno = 2 returns the tail of the list. For any other type, and for argno values outside the

allowed range, the result is undefined and the call may cause an exception.

38.3.2 Functions for creating Prolog terms

xxp_cell xxp_mk_emptyref();

Creates and returns a new, unbound variable.

xxp_cell xxp_mk_int(long n);

Returns a cell representing the integer number n as a Prolog integer (this is a macro, not a function).

If the value of n is outside of the range of Prolog integers, then it is ‘folded’ into the range.

xxp_cell xxp_checked _mk_int(long n, unsigned argpos, CspRetC *rcp);

This is the enhanced version of the xxp_mk_int function above; enables the caller to detect and

handle the condition when the value of n falls outside of the range of Prolog integers. When n is

within the allowed range then the result is the same as from xxp_mk_int. Otherwise the behavior of

the function depends on the value of the return code pointer rcp. If rcp is NULL then integer

overflow error is raised internally by the function, and the control will not return to the caller. If rcp

is different from NULL then the code of the prepared error signal is placed into *rcp and the

function returns a cell representing the integer value 1 (as the least harmful default). The error term

signaled or prepared will indicate argpos as the argument position.

xxp_cell xxp _mk_float(CspFloatType f);

Returns a cell representing the float number f.

xxp_cell xxp_mk_symb(const char * chars_adr);

Returns a cell representing a Prolog atom, which contains the characters pointed at by chars_adr

(a null-terminated string). The length of the string, including the terminating null character, must not

exceed the limit defined as MAX_ATOM_LENGTH in the header file. The const is omitted in

non-ANSI C compilation.

xxp_cell xxp_mk_functor(const char * chars_adr, int argno);

Returns a cell representing a Prolog functor that contains the characters pointed at by chars_adr

and has arity argno. (See also xxp_mk_symb above.)

xxp_cell xxp_mk_list(xxp_cell head, xxp_cell tail);

Returns a cell representing a Prolog list with head head and tail tail.

xxp_cell xxp_mk_struct(int argno, xxp_cell name, xxp_cell *args);

Returns a cell representing a compound term, which has arity argno, name name, and whose

arguments are in array args.

38.3.3 Functions for unification

CspRetC xxp_unify(xxp_cell term1, xxp_cell term2);

term1 is unified with term2. It returns XXP_E_SUCCEED if the unification was successful and

XXP_E_FAIL otherwise. If the unification fails then the variable bindings are not undone; that

means that if this function call fails then the built in predicate must return XXP_E_FAIL as well.

CS-Prolog development system

224

CspRetC xxp_unify_with_occurs_check(xxp_cell term1, xxp_cell term2);

Performs unification of term1 and term2 with occurs check. It means that if term1 and term2

are not unifiable or term1 and term2 are unifiable and no cyclic term is created during unification

then this function has the same effect as xxp_unify above. If during the unification a cyclic term

would be created, then the function returns XXP_E_FAIL (the variable bindings made before cycle

detection are not undone).

CspRetC xxp_safe_unify(xxp_cell term1, xxp_cell term2);

term1 is unified with term2. It returns XXP_E_SUCCEED if the unification was successful and

XXP_E_FAIL otherwise. If the unification fails then the variable bindings are undone. That means

that if this function call fails then the built in predicate can continue and eventually succeed.

38.3.4 Functions for non-deterministic predicates

The user has the possibility to implement foreign built-in predicates that can succeed more than once. These

functions create a so-called choice point, where the information needed by the backtracking mechanism of

CS-Prolog is stored. After successful termination of a non-deterministic C function (and Prolog foreign

predicate), a subsequent failure will call the same C function again. The choice point has to be created by the

first invocation of the function and has to be destroyed explicitly by the last call (decision of the called

function). Of course, a Prolog cut (!) can destroy the choice point as well.

The non-deterministic predicates usually need some data that can be accessed and modified. These data cannot

be generally stored in static C variables, because there can be more than one choice point present for the same

predicate. Any such information needed for the next call of the function can be stored only in xxp_cell-s

that are put in the choice points. These cells are considered as virtual arguments.

For every non-deterministic built-in predicate, a C structure has to be statically declared. The type of this

structure is

extb_choice_point

This structure is used by the runtime system, and the user must not change the value of its fields.

The following C functions serve for creating a non-deterministic foreign predicate.

int xxp_first_call();

Returns 1 (TRUE) if the call of the foreign predicate is entered in ‘forward’ execution (first time).

Otherwise, when the call is entered during backtracking as for a new alternative, the function returns

0 (FALSE).

void xxp_create_choice_point(int n, extb_choice_point *chp);

Creates a choice point accommodating n argument cells. n has to be greater than, or equal to, the

arity of the predicate. Let's denote this arity by ari. The arguments of the predicate are stored in the

first ari cells; the rest n-ari cells can be used for storing data to be retained between the successive

calls. chp is a pointer to a static structure. Never use a pointer to an automatic variable!

void xxp_set_choice_point_arg(int argno, xxp_cell cell);

Sets the argno-th cell in the choice point to cell. Do not use this function for argno less or equal

then the arity of the predicate (it would change an argument originated from Prolog). argno has to

be less or equal then the size of the choice point set in call of xxp_create_choice_point.

void xxp_destroy_choice_point();

Removes the choice point. It has to be called in the last call of the predicate (when the called function

decides that there are no more alternative solutions).

38.3.5 Functions for backtrackable predicates

The user has the possibility to implement foreign built-in predicates that undo something when the system

backtracks on them. These functions can push some data - named trail block - on an internal stack, if

information is needed for undoing. When backtracking, the trail block is passed as an argument to a user-

defined C function that is responsible for the undo operation. This function is called undo function. Every

backtrackable predicate implementation must register itself in the system; by doing so, it gets a unique trail

Chapter 38: The C interface

225

identifier. Every call of such a predicate makes then a so-called trail note supplying its identifier and the

current data - the trail block. (More exactly: trail notes can be set up only using a trail identifier obtained by

registering a trail note format and undo function; several predicates can share the same identifier if otherwise

appropriate).

The trail block, which is an array of xxp_cells, can contain two types of data: CS-Prolog terms, or something

else not interpreted by the CS-Prolog engine, e.g. a flag-set or a pointer, explicitly cast to the type xxp_cell. If

CS-Prolog terms are stored in a trail-block, the system has to be informed about this fact, because the garbage

collection has to deal with all living CS-Prolog terms. So when a backtrackable predicate registers itself, it

must give the information, which element of its trail blocks are CS-Prolog terms.

The prototype of the registering function:

typedef int (*UndoRoutine)(xxp_cell * tr_block);

int xxp_register_user_trail_block(int block_size,

 long mask, UndoRoutine undo_func);

The function returns an integer serving for identification of the trail notes of this predicate.

block_size is the number of cells stored in a trail block. The returned integer is always greater than

zero. mask is an integer, in which one bit is set to 1 for each cell in the trail block that is to contain a

CS-Prolog term. (The least significant bit corresponds to the 0th element of the block.) E.g., if the size

of the block is 3, and all elements are CS-Prolog terms the mask has to be 7, if only the second

element is a CS-Prolog term, then the mask should be 4. undo_func is a function that will be called

every time, when backtrack occurs on this particular predicate. The argument of the undo_func will

be the trail block. (The value returned by undo_func is ignored at present.)

void xxp_make_trail_note(int note, xxp_cell *tr_block);

Makes a trail note - pushes the trail block on the internal stack. note is the identifier returned by a

previous xxp_register_user_trail_block call. tr_block is the actual trail block. It has to be of the

exact size specified in the registration (no check is done), and can contain CS-Prolog terms only on

positions given in the registered mask (no check can be done either).

38.3.6 Memory handling

On platforms with limited memory (e.g. transputers), the CS-Prolog system allocates all memory available

when initializing the runtime system. So the standard C memory handling functions malloc and free cannot be

used. On machines with virtual memory management these standard C functions will work, but for

compatibility purposes it is recommended to call the interface functions that allocate (and free) memory

maintained by the CS-Prolog runtime system.

char * xxp_allocate_user_block(unsigned size);

Allocates a piece of memory of size size. It is a replacement of the standard malloc function.

Returns the pointer to the newly allocated memory.

void xxp_free_user_block(char *ptr);

Frees memory allocated previously with xxp_allocate_user_block. It is a replacement of the

standard free function.

38.3.7 Raising exceptions

If the foreign predicate detects an error, it can be signaled in several ways. The necessary information can be

prepared either directly by the function, in which case an arbitrary error_term can be composed, or one of the

standard Prolog exceptions formats, listed in the section 4.3, can be prepared using the corresponding error

composing function.

In the first case a C function has to be called which will not return (executes a setjmp C library routine

inside).

void xxp_do_signal_prepared(xxp_cell err_term, xxp_cell info_term);

Raises an exception with error term err_term and additional error info term info_term.

err_term and info_term are arbitrary Prolog terms created by the user. The function does not

return. If the error will be handled by protected/3 predicate, the info_term should be of the same

format as described in section 4.3, a list with the erroneous call as first element.

CS-Prolog development system

226

xxp_cell xxp_construct_builtin_call(void);

Returns the CS-Prolog term representation of the built-in call from which it is invoked. This term can

be used to construct the error info term passed to a xxp_do_signal_prepared call.

In the second case, the standard exception information can be prepared by using the corresponding C function

(from the list below), which returns an error code (of type CspRetC). As side effect of this call, the exception

information is stored in a static data structure in the system. The prepared information will be used for raising

the exception, if that happens ‘shortly’ after the call (normally before, or at, returning from the predicate). The

following C functions prepare error information and return standard error codes:

CspRetC xxp_instantiation_error(unsigned argno,xxp_cell other);

CspRetC xxp_type_error(unsigned argno, unsigned valid_type, xxp_cell culprit,

 xxp_cell other);

CspRetC xxp_domain_error(unsigned argno, unsigned valid_domain, xxp_cell culprit,

 xxp_cell other);

CspRetC xxp_existence_error(unsigned argno, unsigned object_type,

 xxp_cell culprit, xxp_cell other);

CspRetC xxp_permission_error(unsigned operation, unsigned permission_type,

 xxp_cell culprit, xxp_cell other);

CspRetC xxp_representation_error(unsigned argno, unsigned flag,

 xxp_cell other);

CspRetC xxp_syntax_error(xxp_cell atom, xxp_cell other);

CspRetC xxp_resource_error(unsigned resource, xxp_cell other);

CspRetC xxp_system_error(xxp_cell other);

CspRetC xxp_interrupt(unsigned interrupt_name, xxp_cell interrupt_data);

For these functions, argument argno shows which argument caused the error, argument culprit is a

Prolog term representing the culprit in the error term, and argument other is a Prolog term representing the

last argument of the error term. The values of arguments valid_type, valid_domain, object_type,

operation, permission_type flag, resource, and interrupt_name have to be one of the

constants defined in the csprolog.h header file for the given error kind.

Note that if other is a term the type of which is different from XXP_T_LIST, then the system will convert it

into a one-item list, or, for xxp_clp_sy_error, if it is an integer, then into a two-item list of the form

[internal_error,Value].

The preferred way of raising the prepared exception is to return the error code obtained, as the outcome of the

predicate call. In this case, the exception will be raised by the CS-Prolog engine immediately after the call.

As an alternative, the following function can be used:

void xxp_signal(CspRetC signal_code);

This function is similar to xxp_do_signal_prepared, but uses the information prepared inside the

system instead of passing the terms as argument. The function works properly only if the stored information is

still valid and corresponds to signal_code. This condition can be ensured if signal_code is obtained in

the proper way (from one of the error composing functions, or as the outcome of another system-provided

function; no other error has been prepared since its formation; and it has not been stored across different

invocations of the function implementing the built in predicate). Direct usage of xxp_signal instead of

returning signal_code as the outcome of the predicate might be necessary when the error is detected in a

deeply embedded subroutine call and passing the code all the way upward is not organized, and there is no

need to reset the internal state of the implementing module.

There are three other functions logically belonging to this group of exception handling. They can be used for

coping with errors returned from other (usually system-provided) functions. The simple handling of such errors

is to return from the predicate immediately, passing the error code received as the outcome of the predicate, or

raising the corresponding signal directly. There are, however, circumstances when the predicate itself can

handle the error or wants to change the exception indicated. The functions supporting this activity are the

following:

Chapter 38: The C interface

227

xxp_cell xxp_get_error_term(CspRetC signal_code);

This function returns a cell that would constitute the error_term if signal_code were signaled at that

moment. signal_code is supposed to be a standard error code obtained recently. The term returned is built

from the error information stored in the system by the latest error-composing function call. If the stored

information does not correspond to signal_code then XXP_NIL is returned. This can happen if an

intervening error-composing call overlaid the original data, if task switching or garbage collection has been

performed since the preparation (neither should occur during one invocation of an external function), or if the

error has been reset (see below). The returned term can be inspected by the caller for learning the details of the

error.

xxp_cell xxp_get_other_for_error(CspRetC signal_code);

This function is similar to xxp_get_error_term above; the difference is that a cell representing

other_info is returned (instead of error_term).

void xxp_reset_error_flags(void);

This function might be used if the predicate handles locally the standard error prepared most recently. It is not

strictly necessary to call the function even in this case, because normally the next error will overlay the

prepared error data. The most useful effect of the call is that an ensuing xxp_get_error_term call will

return XXP_NIL. After resetting the error, the error code pertaining to the prepared signal must not be used

for raising the signal.

38.3.8 Generating events and interrupts

It is possible to generate an event or an interrupt from a C function imitating the CS-Prolog predicates

generate_event/[1,2] and cause_interrupt/2.

int xxp_generate_event(xxp_cell name, xxp_cell data);

Generates an event named name and having event data data. These arguments are Prolog terms

created by the user. The function will cause an exception when called with invalid arguments (see

description of generate_event/2).

int xxp_cause_interrupt(xxp_cell proc, xxp_cell data);

Generates an interrupt for the process named proc, with interrupt data data. The function will

cause an exception when called with invalid arguments (see description of cause_interrupt/2).

38.3.9 Calling a Prolog predicate from C

There is an interface function for evaluating a CS-Prolog goal from C code.

int xxp_call_prolog_from_C(xxp_cell *goal)

Calls the term pointed by goal as a meta-call. If this term does not contain a module prefix, the

interpretation of the call is tried in the current module first, and, if it is not defined there, in the first

module where an appropriate - public - Prolog predicate is defined. If the goal term contains a module

prefix, only that module is used.

The function returns XXP_E_SUCCEED if the Prolog call terminated successfully and returns

XXP_E_FAIL if the call failed. If the goal term does not represent a legal Prolog call, the function

returns a suitable error code. However, the exceptions and interrupts that occur during the execution

of the Prolog call have to be handled with usual CS-Prolog tools (protected/3, catch/3) inside the

execution. The protection levels, which were set previously, are not valid during the - inner - call.

The error code returned by the interface function when the goal term is not a legal Prolog call, can be passed as

the return code of the C function implementing the foreign Prolog predicate, so that this exception will be

raised at the embedding Prolog level. If the C program has to know what type of error occurred, it should use

the

XXP_ERROR_KIND(ret)

macro for extracting a coded value, which is one of the integers XXP_INSTANTIATION_ERROR,

XXP_TYPE_ERROR etc. defined in the header file. There is an internal static storage to store exception details,

so a new exception overwrites the data of the previous one. So, do not keep error code results for long!

CS-Prolog development system

228

If the C function stores in xxp_cell variables some Prolog terms (atoms, structures, etc.) and then

xxp_call_prolog_from_C is called, the cells might cease to represent valid Prolog terms after returning

from this call because of an eventual garbage collection. So, never store Prolog terms in C variables across this

function call! If a term has to be retained it should be passed as argument to the *goal, so that garbage

collection would be aware of it. You can always use Prolog data items accessed through xxp_arg (with a

valid argument number); furthermore after calling xxp_call_prolog_from_C the components of *goal

term are valid up to the next such call.

The inner Prolog call is performed as part of the active process. All persistent changes (clauses or values

modified) take effect normally. Unification of (sub)terms of arguments passed to the calling foreign predicate

will have the usual effect as well after returning.

If the active process is suspended inside an inner (called from C) Prolog call, other processes can execute a

new call Prolog from C. The order of returns from these inner calls is fixed, the call_prolog_from_C

function called last has to return first. Therefore, it can occur that some processes are waiting for the

termination of an inner Prolog call of another process. These waiting processes are reported to be in buried

state.

The allowed number of arguments in goal is reduced by 1; it becomes actually 254.

38.4 Foreign predicate example

The program below implements five foreign predicates with the external C interface of CS-Prolog.

#include <string.h>

#include "csprolog.h"

/*

 * Returns in the third argument the result of

 * addition of the first two arguments

 */

int plus_c_3()

{

 long l;

 xxp_cell arg1 = xxp_arg(1);

 xxp_cell arg2 = xxp_arg(2);

 if (xxp_type(arg1) != XXP_T_INT)

 return(xxp_type_error(1,EXC_VTYPE_INTEGER,arg1,

 XXP_NIL));

 if (xxp_type(arg2) != XXP_T_INT)

 return(xxp_type_error(2,EXC_VTYPE_INTEGER,arg2,

 XXP_NIL));

 l = xxp_int_val(arg1) + xxp_int_val(arg2);

 return xxp_unify(xxp_arg(3),xxp_mk_int(l));

}

/*

 * Duplicates the first argument and unifies

 * the duplicate with the second argument

 */

#define MAX_SYM_LEN 1024

xxp_cell list_append();

#define MAX_ARG 16

int duplicate_c_2()

{

 xxp_cell out_cell;

 xxp_cell arg = xxp_arg(1);

 char dup_str[MAX_SYM_LEN], *str;

 xxp_cell dup_args[MAX_ARG];

 int i, arity;

 switch (xxp_type(arg)) {

 case XXP_T_INT :

 out_cell = xxp_mk_int(2 * xxp_int_val(arg)); break;

 case XXP_T_FLOAT :

 out_cell = xxp_mk_float(2 * xxp_float_val(arg));

 break;

 case XXP_T_SYMB :

Chapter 38: The C interface

229

 str = xxp_symb_chars(arg);

 if (strlen(str) > MAX_SYM_LEN/2 - 1)

 return(xxp_representation_error(1,

 EXC_FLAG_MAX_ATOM,XXP_NIL));

 strcpy(dup_str,str);

 strcat(dup_str,str);

 out_cell = xxp_mk_symb(dup_str); break;

 case XXP_T_LIST :

 out_cell = list_append(arg,arg); break;

 case XXP_T_STRUCT :

 arity = xxp_struct_arity(arg);

 if (arity > MAX_ARG/2)

 return(xxp_representation_error(1,

 EXC_FLAG_MAX_ARITY,XXP_NIL));

 for (i = 0; i < arity; i++)

 dup_args[arity+i] = dup_args[i] =

 xxp_struct_arg(i+1,arg);

 out_cell = xxp_mk_struct(2*arity,

 xxp_struct_functor(arg),dup_args);

 break;

 default :

 return XXP_E_FAIL;

 }

 return xxp_unify(xxp_arg(2),out_cell);

}

xxp_cell list_append(list1, list2)

 xxp_cell list1, list2;

{

 if (xxp_raw_type(list1) == XXP_T_LIST)

 return xxp_mk_list(xxp_list_head(list1),

 list_append(xxp_list_tail(list1),list2));

 else

 return list2;

}

/*

 * Non deterministic predicate.

 * range(N1,N2,X)

 * returns in the third argument the numbers

 * N1, N1+1, ... N2

 * on backtracking.

 */

static extb_choice_point range_choice_point;

int range_c_3()

{

 xxp_cell arg1 = xxp_arg(1);

 xxp_cell arg2 = xxp_arg(2);

 long l2, l_out;

 if (xxp_first_call()) {

 if (xxp_type(arg1) != XXP_T_INT)

 return(xxp_type_error(1,EXC_VTYPE_INTEGER,arg1,

 XXP_NIL));

 if (xxp_type(arg2) != XXP_T_INT)

 return(xxp_type_error(2,EXC_VTYPE_INTEGER,arg2,

 XXP_NIL));

 l2 = xxp_int_val(arg2);

 l_out = xxp_int_val(arg1);

 if (l_out > l2)

 return XXP_E_FAIL;

 if (l_out == l2)

 return xxp_unify(xxp_arg(3),arg1);

 xxp_create_choice_point(4,&range_choice_point);

 }

 else {

 l2 = xxp_int_val(arg2);

 l_out = xxp_int_val(xxp_arg(4));

 }

 if (l_out == l2)

CS-Prolog development system

230

 xxp_destroy_choice_point();

 else

 xxp_set_choice_point_arg(4,xxp_mk_int(l_out + 1));

 return xxp_unify(xxp_arg(3),xxp_mk_int(l_out));

}

/*

 * Backtrackable example

 *

 * Simple global set_value_b and get_value_b

 * for atomic arguments on a single processor

 * (The built-in set_value_b is local to a process)

 *

 * Stores the value in memory allocated from Prolog

 *

 * There is a fixed static array for values

 * (could be made dynamic)

 *

 */

#define MAX_VAL 16

typedef struct {

 xxp_cell name;

 int type;

 char * value;

} v_type;

static v_type v_array[MAX_VAL];

static int v_max = 0;

static int set_trail_note = 0;

#define SET_TR_NOTE_SIZE 3

#define SET_TR_NOTE_CELL_MASK 1L

#define NO_VALUE 0

static int undo_set_b(xxp_cell *trail_block);

int glob_set_b_c_2()

{

 xxp_cell name = xxp_arg(1);

 xxp_cell new_value = xxp_arg(2);

 int tname = xxp_type(name);

 int tvalue = xxp_raw_type(new_value);

 xxp_cell tr_block[SET_TR_NOTE_SIZE];

 int i, int_val;

 unsigned size;

 char *symb_val, *val_ptr;

 double float_val;

 if (tname == XXP_T_EMPTYREF)

 return(xxp_instantiation_error(1,XXP_NIL));

 if (tvalue == XXP_T_EMPTYREF)

 return(xxp_instantiation_error(2,XXP_NIL));

 if (tname != XXP_T_INT)

 return(xxp_type_error(1,EXC_VTYPE_INTEGER,name,XXP_NIL));

 if (tvalue == XXP_T_LIST || tvalue == XXP_T_STRUCT)

 return(xxp_type_error(1,EXC_VTYPE_ATOMIC,name, XXP_NIL));

 if (set_trail_note == 0)

 set_trail_note = xxp_register_user_trail_block(

 SET_TR_NOTE_SIZE,

 SET_TR_NOTE_CELL_MASK,

 undo_set_b);

 /* Find the name in the array */

 for(i = 0; i < v_max; i++)

 if (v_array[i].name == name)

 break;

 if (i == v_max) { /* not found */

Chapter 38: The C interface

231

 if (v_max == MAX_VAL)

 return xxp_representation_error(1, EXC_FLAG_MAX_ATOM,XXP_NIL);

 v_max++;

 v_array[i].name = name;

 v_array[i].type = NO_VALUE; /* for undo */

 }

 tr_block[0] = name;

 tr_block[1] = (xxp_cell)v_array[i].type;

 tr_block[2] = (xxp_cell)v_array[i].value;

 switch (tvalue) {

 case XXP_T_INT:

 int_val = xxp_int_val(new_value);

 val_ptr = (char *)&int_val;

 size = sizeof(long);

 break;

 case XXP_T_FLOAT:

 float_val = xxp_float_val(new_value);

 val_ptr = (char *)&float_val;

 size = sizeof(double);

 break;

 case XXP_T_SYMB:

 symb_val = xxp_symb_chars(new_value);

 val_ptr = symb_val;

 size = strlen(symb_val) + 1;

 break;

 }

 xxp_make_trail_note(set_trail_note,tr_block);

 v_array[i].type = tvalue;

 v_array[i].value = xxp_allocate_user_block(size);

 if (v_array[i].value == NULL)

 return xxp_resource_error(EXC_RESOU_MEMORY,XXP_NIL);

 memcpy(v_array[i].value,val_ptr,size);

 return XXP_E_SUCCEED;

}

int glob_get_b_c_2()

{

 xxp_cell name = xxp_arg(1);

 xxp_cell value;

 int i;

 int tname = xxp_type(name);

 if (tname == XXP_T_EMPTYREF)

 return(xxp_instantiation_error(1,XXP_NIL));

 if (tname != XXP_T_INT)

 return(xxp_type_error(1,EXC_VTYPE_INTEGER,name,XXP_NIL));

 /* Find the name in the array */

 for(i = 0; i < v_max; i++)

 if (v_array[i].name == name)

 break;

 if (i == v_max) /* not found */

 return xxp_permission_error(EXC_OPER_ACCESS, EXC_PERMTYPE_VALUE,

 name, XXP_NIL);

 switch (v_array[i].type) {

 case XXP_T_INT:

 value = xxp_mk_int((*(long *)v_array[i].value));

 break;

 case XXP_T_FLOAT:

 value = xxp_mk_float((*(double *)v_array[i].value));

 break;

 case XXP_T_SYMB:

 value = xxp_mk_symb(v_array[i].value);

 break;

 }

CS-Prolog development system

232

 return xxp_unify(xxp_arg(2),value);

}

static int undo_set_b(xxp_cell *trail_block)

{

 xxp_cell name = trail_block[0];

 int i;

 /* Find the name in the array */

 for(i = 0; i < v_max; i++)

 if (v_array[i].name == name)

 break;

 if (i == v_max) /* not found */

 return XXP_E_FAIL; /* impossible, always found */

 xxp_free_user_block(v_array[i].value);

 if (trail_block[1] == NO_VALUE) { /*undo first set*/

 int j;

 for (j = i + 1; j < v_max; j++)

 v_array[j - 1] = v_array[j];

 v_max--;

 }

 else {

 v_array[i].type = (int)trail_block[1];

 v_array[i].value = (char *)trail_block[2];

 }

 return(XXP_E_SUCCEED);

}

Chapter 39: The Constraint Logic Programming (CLP) extension

233

39. The Constraint Logic Programming (CLP) extension

The Constraint Logic Programming paradigm had been introduced by J.Jaffar, in 1987. The CS-Prolog

runtime program can be configured to include one or several different CLP solvers (the technical maximum at

present is four solvers).

There is a user-tailorable customization source module in the distribution kit for this purpose, in which the

desired solvers and their important properties can be specified (clp_cfg.c). The solvers themselves should

be supplied in the form of linkable object libraries. The process of creating a customized runtime is much the

same as in the case of extending the runtime with user-defined (foreign) built-in predicates. There is an

experimental linear solver, called the ML solver, included in the distribution kit. This solver is based on a

linear programming algorithm; it handles linear inequalities and equations over real numbers.

For the sake of simplicity, when describing the interaction between different parts of the system, we shall speak

of ‘the solver’ and ‘the core’, meaning the subsystem that is responsible for maintaining and repeatedly re-

evaluating the set of constraining conditions, on one hand, and the component that keeps track of the active

instances of the different solvers, dispatches requests originated by the Prolog program to the appropriate

instance, and performs other system-related tasks, on the other hand.

A couple of CLP-related predicates are defined in the new CSP built-in predicate set. They can be divided into

three groups. The first group is concerned with the term type system extension, and contains the following

predicates (see chapter 13):

constrained_var/1 % c.f. var/1

strict_nonvar/1 % c.f. nonvar/1

strict_ground/1 % c.f. ground/1

The second group consists of the solver-independent predicates used for obtaining information about the

installed solvers and selecting a particular solver (see chapter 31):

query_clp_config/4

select_clp_solver/[0,1]

The third group consists of the ‘normal’ interface predicates used directly in the work with the solvers (see

chapter 31):

clp_constraint/1,

clp_type/[2,3]

clp_max/[2,4]

clp_min/[2,4]

clp_value/2,

clp_debug_mode/1,

The predicates in the third group require cooperation between the core system and the particular solver

(currently selected). The idea of separately selecting the current solver is borrowed from the input/output

system where the program can select the current input stream and current output stream with set_input and

set_output, respectively, and the non-specific forms of other i/o predicates implicitly refer to the streams ‘set’

previously. The differences are that the ‘clp’ predicates have only non-specific forms - they cannot specify

directly the solver -, that select_clp_solver is backtrackable, while set_input and set_output are not, and that

the selection is process-specific, not global.

The Prolog interface for a solver may consist of some or all of the ‘normal’ predicates and the set also may be

extended by defining specific predicates as ‘foreign’ ones. In fact, the solver can entirely ignore the normal

predicates.

Each solver has a SolverId assigned to it by the configuration module. The solver which has the value 0

assigned as SolverId is called the default solver; it is selected initially and can be selected by calling

select_clp_solver/0 (without argument). The SolverId is the index of the corresponding entry in the

configuration table; the default solver is described by the first entry.

The actual properties of the solvers are specified in the configuration table; in the most general case several

CS-Prolog processes can have instances of more than one solver running (but only one instance of each

particular solver), and each solver can be active in more than one CS-Prolog process (multithreading), and can

‘live together’ with instances of other solvers in one thread. (Note that here and in the sequel, ‘thread’ is used

as a synonym for ‘CS-Prolog process’ for short, not for the operating system’s thread concept.) Different

CS-Prolog development system

234

instances of the same solver should be unrelated in the sense that problem-specific data from one thread should

not be manipulated by an instance living on another thread.

The supposed general behavior of a solver instance is as follows.

The instance is initialized when the first ‘significant’ predicate call is issued by the user program in the thread.

All normal interface predicates are deemed significant except clp_debug/1. If the solver defines its own

interface predicates, then it must notify the core system if the predicate call qualifies as significant. The

instance starts with an empty ‘model’ (system of constraints). During forward execution, new constraints are

incrementally added to the model. The solver evaluates the resulting constraint set, and, if it proves feasible,

accepts the additions (the call succeeds), otherwise rejects them (fails). If the predicate, which passes the new

constraint - typically clp_constraint - succeeds, all unbound variables occurring in the passed constraints

become transformed into constrained variables (see later in this chapter). If the Prolog program later performs

backtrack over a clp_constraint call, the solver must revert to the state that was in effect before that call.

Beside clp_constraint or its solver-specific counterpart, adding special constraints equivalent with explicit

constraints of the form

<constrained_variable> =:= <value>

or

<constrained_variable> = <value>

can also be originated from Prolog unification implicitly (the actual form depends on which relation is

understood by the solver).

It is important that the ‘observable’ state of the model after backtracking should be identical with the state

before the call the effect of which had just been undone by the backtrack procedure. (Internal details exposed

by clp_debug are not considered as part of the observable state).

The rest of the interface predicates usually serve only for querying; they should not change the actual state of

the model.

The clp_constraint/1 predicate takes as argument a list of structures (specific for the solver involved), each

structure representing one constraint. For example the ML linear solver accepts structures where the main

functor is one of (=:=) /2, (=<) /2, or (>=) /2, and the arguments of the structure are CLP linear

expressions, , i.e. extended arithmetic expressions that may contain unbound variables and constrained

variables, but only in such a way that after ‘flattening’ the expression and evaluating the variable-free

subexpressions, the result is a (possibly multi-variable) polynomial, each addend of which has a summary

degree of at most one.

A separate document describing the interface for developing and attaching a new CLP solver is available for

external developers (subject to a license agreement).

39.1 New term type: constrained variable

The CLP extension introduces this new type into the system of term-types. Constrained variable is a rather

peculiar type; in some respects it is like a variable, in others it resembles a non-ground structure, and in still

other circumstances it can behave like a number.

It is important to tell in advance that this extension changes the meaning of several built in predicates relying

on the closed set of types defined by the Standard; a couple of assumptions valid in standard Prolog do not hold

any more. The change, however, affects only those programs that actively use the extension (work with one or

more solvers).

Constrained variables as a type have no literals or other external representation in the source program; they

appear when an unbound variable is first time mentioned in a constraint passed to a solver (if the call

succeeds). They are, of course, associated with a corresponding internal variable of the solver. We’ll call these

internal variables ‘CLP problem variables’ or simply ‘problem variables’, to distinguish them from those that

are not associated with Prolog objects (as e.g. slack variables in the case of a linear solver).

In the term ordering sequence, used in term comparison, ‘constrained variable’ type is inserted between

‘variable’ and ‘floating point number’ (see chapter 15).

Chapter 39: The Constraint Logic Programming (CLP) extension

235

Solvers can differ in the numeric types they handle. From the system’s point of view the important factor is

that whether the solver uses strict - ‘Prolog’ like - typing (i.e. integers are different from floats, even if

numerically equal) or flexible - ‘arithmetic’ - typing (only arithmetic equality is considered). With strict

typing, it is up to the solver to accept or reject any particular numeric type (integer or float).

The ML solver uses ‘arithmetic’ typing. The following discussion is based on the ML solver.

The range of admissible values for a particular variable at the current state of the model with respect to the

range of the underlying numeric type can be one of the following:

 totally unrestricted (the variable is said to be FREE);

 limited from one side (UPBND or LOBND, meaning that it has an upper or a lower bound,

respectively);

 confined to a closed interval (BOUNDED);

 fixed at a particular value (FIXED).

The Prolog unification rules are extended for constrained variables. This extension is based on a supposed

generic handling of problem variables by the solvers. According to the generic model, a problem variable

(associated with a CS-Prolog constrained variable) can be in different states as the model is incrementally

enriched (or ‘narrowed’).

The unification rules for constrained variables are the following:

 An unbound variable can always be unified with a constrained variable. After unification it simply refers

to the latter.

 If a constrained variable is being unified with an other constrained variable belonging to the same solver

instance, or with a numeric value and the corresponding problem variable is not FIXED, then the solver is

called via a special entry point, and the terms to be unified are passed as arguments to this call. The solver

should treat the call as a special form of constraint being passed from the user program, and either reject it

because of being inconsistent, or add it to the set of constraints, changing the state of the model (or just

accept, if the new condition is entailed by the current set).

 If a constrained variable is being unified with a numeric value, and the current status of the corresponding

problem variable is FIXED (possibly after accepting the new restriction in the preceding step), then

1) If the solver uses ‘arithmetic’ typing then the success or failure of the unification depends on whether

the numeric value is arithmetically equal (=:=/2) with the value at which the problem variable is

fixed.

2) If the solver uses ‘Prolog’ typing, then instead of arithmetic equality the Prolog unifiability (=/2) is

used in deciding success or failure.

In both cases, unification is handled by the core; the solver (in this step) is only queried about the status of

the problem variable, and its current value if the status is FIXED. (The kind of ‘typing’ used by the solver

is also queried once, in the preparatory phase).

 In all other cases, the unification attempt fails.

If the unification with a numeric value succeeds then the constrained variable becomes transparently bound to

the numeric value like a normal unbound variable.

Note that the solver itself cannot bind a constrained variable to a numeric value; this can happen only when the

Prolog program requests unification. The main reason of this is that, for a solver using arithmetic typing, when

the problem variable becomes FIXED, it is still not decided what type of numeric value should the constrained

variable assume.

39.2 Special behavior of constrained variables

The fact that constrained variables are associated with ‘problem variables’ maintained by the solver, and the

state of the solver being synchronized with the Prolog evaluation stack (backtracking), implies that constrained

CS-Prolog development system

236

variables have no meaning outside of the normal Prolog environment of the Prolog process where they

originally came to being.

For this reason, whenever a term is detached from this environment, constrained variables should lose their

specific meaning, and behave like any other unbound variable. Such detachment occurs, among others, in

input/output, in message passing, in Prolog database modification, and in ‘global’ value handling.

The ‘output’ predicates (write, format & Co.) produce a special form of variable token for a constrained

variable. This token differs from the tokens representing normal unbound variables in that they contain a

”CVAR” sub-string, and also a sub-string showing the SolverId of the owning solver if it is not the default

solver.

For message passing, Prolog database updating (asserta & Co), and for non-backtrackable ‘global’ value

setting, constrained variables in the term are replaced with new unbound variables.

In backtrackable global value setting (set_value_b/2) constrained variables are retained (these values are kept

synchronized with the evaluation stack).

Built-in predicates requiring a numeric value in some argument do not accept a constrained variable at that

position even if the status of the variable is FIXED and the predicate otherwise would accept both integer and

floating point argument in that argument. This restriction does not concern those variables that have been

unified with a numeric value, as explained above; after unification they represent the number, not the problem

variable.

Furthermore, a built-in predicate requiring an unbound variable for some argument will reject a constrained

variable at that argument position.

237

Appendix A - Error messages of the compiler

Fatal error caused by system files

Cannot open built-in file

Cannot open operator file

Fatal errors

Module name expected

Incorrect export list

Multiple source

Missing argument

No input file name

Cannot open input file

Out of memory

Syntax errors

100 token is too long

101 string is too long

102 string ends illegally

103 invalid character code

104 invalid character

105 invalid esc sequence

106 number expected

107 integer out of range

108 float number out of range

109 denormalized float number

110 incorrect token

111 left parenth expected

112 right parenth expected

113 right curly bracket expected

114 right user bracket expected

115 end of term expected

116 comma expected

117 comma or period expected

118 comma or right parenth expected

119 comma or list-end token expected

120 list begins incorrectly

121 list ends incorrectly

122 too many arguments

123 unexpected end-of-file

124 unexpected period

125 incorrect term

126 not parsible as a number

200 module begins incorrectly

201 wrong mode specification

202 invalid module name for import source (’[]’ or self)

203 wrong clause head

204 wrong clause body

205 incorrect functor list

206 invalid functor arity

207 non name in functor spec

208 non-negative integer expected

209 name expected

210 full predicate indicator expected

211 inp out inout symb expected

212 unknown directive or invalid arity

213 directive is reserved for internal use

214 unsupported directive

215 directive is not supported (use preprocessor facility)

216 repeated module directive

217 incorrect priority

218 incorrect operator type

219 comma operator cannot be redefined

220 conflicting infix and postfix specification

221 module name is too long

222 invalid bracket component

223 conflicting bracket exists

Appendix A

238

224 bracket and operator conflict

225 curly bracket cannot be redefined

226 empty list atom cannot be bracket

227 unknown compile-time prolog flag

228 unknown value for prolog flag

229 End-of-file inside comment

230 clause behind the logical end-of-program

Semantic warnings

1 no public predicates

2 predicate ind is undefined (taken for non-existing dynamic)

3 predicate ind is undefined, but has been mentioned as discontiguous
(taken for dynamic)

4 predicate ind is undefined, but has mode declaration

5 predicate ind - redundant mode declaration

6 predicate ind is being imported; earlier 'discontiguous' directive
is ignored

7 predicate ind is built-in predicate; 'discontiguous' directive is
ignored

8 predicate ind - repeated export

9 predicate ind - repeated import

10 predicate ind - repeated mode declaration

11 predicate ind (clause-N) - singleton variable variable name

12 predicate ind (clause-N) - first (meta) call is an uninstantiated
variable

13 predicate ind (clause-N) - contains uninstantiated variable as
meta-call

Semantic errors

30 predicate ind is exported, but not defined

31 predicate ind built-in predicate is imported from user module

32 predicate ind - incompatible mode declaration

33 predicate ind is built-in predicate; it cannot be redefined

34 predicate ind - the directive must preceede the 1st clause of the
procedure

35 predicate ind - discontiguous directive is invalid for external
procedure

36 predicate ind - non-contiguous clause for the procedure

37 predicate ind - redundant or contradictory declaration

38 predicate ind already has local definition

39 predicate ind - already imported

40 predicate ind is already declared external

41 predicate ind is already declared foreign

42 predicate ind - conflict with earlier import

43 predicate ind - contradiction with earlier mode declaration

44 predicate ind - contradiction with other mode declaration for
imported procedure

45 predicate ind is a control construct

46 predicate ind is a control construct; it cannot be redefined

47 predicate ind - import from self without renaming

48 predicate ind - import from self of non-exported procedure
49 '[]' is not allowed as module name

50 invalid module prefix (atom or variable expected)

51 invalid call (atom, structure, or variable expected)

Fatal code generation errors

Dynamic clause is too complex (needs too many XAM registers)!

Static clause is too complex (needs too many XAM registers)!

Error messages of the compiler

239

Code generation errors

predicate predicate ind, clause-N; limit of calls in clause exceded

predicate predicate ind, clause-N; limit of calls in path exceded

predicate predicate ind, clause-N; limit of paths in clause exceded

Code generation warnings:

no public predicates

240

Appendix B - Error messages of the linker

Fatal linkage errors

Error: missing argument

Error: path name is too long

Error: too many module names

Error: Invalid indirect filename argument '@'

Error: response file is too large

Error: item in response file is too long

Error: invalid argument list (extraneous comma)

Error: invalid argument list (more than one output file)

Error: cannot open temporary file

Error: cannot open output file file_name

Error: cannot open module file file_name
Error: cannot open output file cspfor.c

Error: invalid argument list

Memory full

Temporary file(s) cannot be removed

Error: Inconsistent module in file_name, wrong XAM_opc version

Error: Inconsistent module in file_name, wrong builtin set version

Error: Inconsistent module in file_name, wrong optional module header size

Error: Inconsistent module in file_name, compiled with an incompatible old
compiler version

Error: *Unknown error* in file_name, in optional module header (sh. not

occ)

Linkage errors

Error: main goal is not defined

Error: duplicate main goal definition

Error: duplicate module name module_name

Error: unknown module name module_name in module file file_name

Error: predicate_ind is not public; imported in module module_name
Error: Closed import loop detected

module module_name_1 imports predicate_ind_1a as

predicate_ind_1b

module module_name_2 imports predicate_ind_2a as

predicate_ind_2b
 (…)

Error: Mode declaration for predicate_ind_1 in module file_name_1 does

not agree with the definition predicate_ind_2 in module

file_name_2 (mode_string_1 instead of mode_string_2)

Error: illegal option: option

Linkage warnings

Warning: Mode declaration is missing for predicate_ind in module file_name

(mode_string)

Warning: Import of predicate_ind in module module_name is ambiguous.

Primary supplier module found: module_name_1

Additional supplier module: module_name_2
 (…)

241

Appendix C - Implementation of real-time processes

Some built in predicates are implemented in CS-Prolog (in the 'standard' module, which is linked to every

executable program). Normally this should not concern the programmer. There are, however, specific

circumstances under which the programmer might be confronted with the actual implementation details of

built in predicates.

In some cases during symbolic debugging it is possible that trace goes into the Prolog-level execution of a built

in predicate. It usually does not cause any problem - the programmer can simply let the program go.

Another such situation is when an interrupt occurs, and the interrupted goal is printed out for inspection

(either because no handler is installed for that particular interrupt, or because the handler itself prints out the

goal).

Sometimes the programmer might not understand at what point exactly has the program been interrupted. The

internal names appearing might give some hint in most cases.

There is, however, an important built in predicate which is totally hidden from the user, namely the main goal

of a real-time process implementing its cyclic behavior. For those interested in implementation details the

corresponding part of the 'standard' module source is included below.

call_realtime_goal(EVENTGOAL, INITGOAL) :-

 INITGOAL, !, '$init_realtime_process',

 call_event_loop(EVENTGOAL),

 '$terminate_event'. % (last event)

call_event_loop(EVENTGOAL) :-

 \+(call_event_goal(EVENTGOAL)), !; % backtrack (clean)

 call_event_loop(EVENTGOAL). % cycle

call_event_goal(EVENTGOAL) :-

 '$receive_event', EVENTGOAL,

 '$terminate_event', !.

Notes:

Predicates whose name begin with $ are implemented in C.

'$receive_event' is the asynchronous counterpart of receive/2 as far as communication is concerned.

242

Appendix D - Changes between versions

Changes for version 2.1:

New predicates added: ground/1, calendar_time/1, time_zone/2, localtime_conversion/2,

gmtime_conversion/2, localtime_info/4, gmtime_info/3, localtime_atom/3,

current_environment/2, current_working_directory/1, change_working_directory/[1,2],

system/[1,2,3], tempname[1,2,3].

Chapter 24 dealing with date and time related predicates had been completely rewritten.

Chapter 30 (Miscellaneous predicates) is new.

The description of the following predicates had been updated to reflect the networking extension:

receive/[2,3,4], test_channel/2, channel_list/1. The description of the channel state record had been

updated accordingly.

Some clerical errors had been corrected and an attempt to improve the clarity of the text had been

undertaken.

Changes for version 2.2:

Redundant backslash characters inside quoted strings cause syntax error instead of being ignored.

ANSI standard type-checking predicate float/1 is added as a synonym for real/1.

Out-of-range numeric values cause syntax error when read as (part of) terms and at compilation.

Term syntax is changed (in accordance with the Standard) so that atoms that are operator names, left

bracket names, or right bracket names cannot be immediate arguments of an operator in operator

notation (as atoms). In such position, these special names must be surrounded by parentheses.

In directives that take predicate indicators as argument, sequence of predicate indicators is also

accepted besides list of predicate indicators.

A new option for the float_range_checking_function prolog flag had been introduced:

underflow_to_zero_after_rounding.

The following new directives had been added (as required by the Standard): set_prolog_flag,

discontiguous.

Directives defined in the Standard but unsupported in CSP-II are also recognized.

at_end_of_stream and past_end_of_stream properties of source streams are set only when

the end of the stream is actually reached (earlier the fetching of the end_of_stream atom as a term

by read used to set the indicator).

Control constructs and built-in procedures cannot be redefined by the user program any more.

The first occurrence of a directive specifying some property of a user-defined procedure must precede

the first clause of that procedure in the source text (dynamic, meta_predicete, discontiguous).

The consistency of explicit mode-declarations across modules is checked by the linker; missing mode

declarations are indicated by warnings.

The linker warns about ambiguous import (when the importing module does not specify the exporting

module, and more than one modules export the requested procedure). The reference is solved to the

first matching item found.

The chapter describing cut has been removed from the manual; a new section dealing with control

construct has been included instead into chapter 1 (Syntax).

Flexible predicate bindings are now process-specific. Cyclic binding is prevented. The arguments of

the bind/2 predicate must be visible at the place of the call (with the exception that a restricted

flexible predicate can be bound to a local procedures in the module to which it is restricted even from

outside).

Changes between versions

243

Changes for version 2.3:

CLP extension is prepared, the new ‘constrained variable’ term type is defined for it. New built-in

predicates: constrained_var/1, strict_nonvar/1, strict_ground/1,

query_clp_config/4, select_clp_solver/[0,1], clp_constraint/1,

clp_type/[2,3], clp_value/2, clp_max/[2,4], clp_min/[2,4],

clp_debug_mode/1.

Chapters 31 and 39 are new.

Chapter 38 describing the C interface has been updated.

New command line options for calling the runtime system: -ver, -h[elp]

Warning about singleton variables is now the default for the compiler; the –check_singleton

option is replaced by the new –nocheck_singleton option that can be used to suppress these

warnings.

244

Appendix E - Known problems and errors

localtime_atom/3 under SunOs 4 shows the following anomalies:

When the date value to be converted falls within the range of timestamp values handled by the

operating system (13 December 1901, 22:45:52 - 19 January 2038, 03:14:07, UTC), but there is no

information about daylight saving for that date in the database of the OS, then the name of the zone in

effect at the time of the execution is used (for format item %Z) instead of the primary zone name, but

the correction is performed always according to the value defined for the primary zone.

If the date is very close (within the amount of time zone correction) to the limits of the range handled

by the OS then in some cases either wrap-around occurs from one limit to the other, or truncation to

the nearest limit.

245

Index of Built-in Predicates

(@<) /2 .. 73

(@=<) /2 ... 73

(@>) /2 .. 74

(@>=) /2 ... 74

(<) /2 ... 83

(\=) /2 .. 64

(=) /2 ... 63

(=..) /2 ... 76

(=:=) /2 .. 82

(=<) /2 ... 83

(\==) /2 .. 72

(=\=) /2 .. 82

(==) /2 ... 72

(>) /2 ... 84

(>=) /2 ... 84

(is) /2 .. 81

\+ /1 ...164

abolish/1 ... 95

abolish_b/1...100

abs_time/1..155

add_to_cl_value/2 ..109

add_to_kcl_value/3 ..110

arg/3 ... 76

asserta/1 .. 91

asserta_b/1 .. 96

assertn/2.. 92

assertn_b/2 .. 97

assertz/1 .. 91

assertz_b/1 .. 96

at_end_of_stream/[0,1]120

atom/1 ... 65

atom_chars/2..149

atom_codes/2 ...149

atom_concat/3 ..147

atom_length/2 ..147

atomic/1 .. 67

bagof/3 ...170

bind/2 ..111

bracket/3 ..144

calendar_time/1 ...154

call/1 ..163

call_anywhere/1 ...164

catch/3 ...167

cause_interrupt/2..192

change_working_directory/[1,2]196

channel_list/1...189

char_code/2 ..150

clause/2 ... 86

clause_count/2 .. 87

close/[1,2] ..118

close_channel/1 ..179

clp_constraint/1 ...202

clp_debug_mode/1 ...204

clp_max/[2,4] ...203

clp_min/[2,4] ... 203

clp_type/[2,3] ... 202

clp_value/2 .. 204

compound/1 ... 68

constrained_var/1 .. 70

copy_term/2 ... 77

cpu_time/1 ... 154

current_bracket/3 ... 145

current_dynamic_predicate/2 89

current_environment/2 195

current_input/1 .. 114

current_module/1 ... 90

current_op/3 .. 144

current_output/1 .. 114

current_predicate/1 .. 88

current_predicate/2 .. 89

current_prolog_flag/2 162

current_standard_predicate/1 90

current_static_predicate/2 89

current_working_directory/1 195

delete_value/1 .. 104

deschedule_process/0 185

fail/0 .. 163

findall/3 ... 170

float/1 .. 66

flush_input/[0,1] .. 119

flush_output/[0,1] .. 119

format/[2,3] ... 139

functor/3 .. 75

garbage_collection/0 .. 166

generate_event/[1,2] .. 190

get_atom/[2,3] ... 128

get_byte/[1,2] ... 129

get_char/[1,2] .. 122

get_clause/3 ... 86

get_code/[1,2] .. 125

get_event/[1,2] ... 189

get_line/[1,2] ... 127

get_prolog_flag/2 ... 162

get_value/2 .. 104

gmtime_conversion/2 155

gmtime_info/3 ... 156

ground/1 .. 69

halt/[0,1] .. 166

incr_value/[1,2,3] .. 106

incr_value_b/[1,2,3] ... 107

integer/1 .. 66

is/2 .. See (is) /2

kill/1 .. 176

localtime_atom/3 ... 159

localtime_conversion/2 155

localtime_info/4 ... 157

new/[2,3] ... 174

new_rt/[5,6] ... 174

Index of Built-in Predicates

246

nl/[0,1] ...124

nonvar/1.. 68

not/1 ..164

number/1... 69

number_chars/2 ...150

number_codes/2 ...151

numbervars/3 .. 78

once/1 ..165

op/3..143

open/3 ..115

open/4 ..116

open_channel_for_receive/[1,2]178

open_channel_for_send/[1,2]178

peek_byte/[1,2]...130

peek_char/[1,2] ..123

peek_code/[1,2] ..126

pop_value/[1,2] ..103

process_list/1 ...188

protected/3 ...167

push_empty_cl_value/1108

push_empty_kcl_value/1108

push_empty_kocl_value/1108

push_empty_ocl_value/1108

push_value/2 ..103

put_byte/[1,2] ...131

put_char/[1,2] ..123

put_code/[1,2] ..127

query_clp_config/4 ...200

random/1 .. 84

read/[1,2] ...132

read_term/[2,3] ..131

real/1 .. 66

receive/[2,3,4] ..182

reopen/3 ...117

repeat/0 ..165

reset_timeout/0...192

retract/1 .. 93

retract_b/1 ... 98

retractn/2 .. 94

retractn_b/2 ... 99

select_clp_solver/[0,1]201

send/2 .. 180

set_event_qsize_limit/[1,2] 193

set_input/1 ... 114

set_output/1 ... 115

set_prolog_flag/2 ... 161

set_random_seed/1... 85

set_stream_position/2 121

set_timeout/1 ... 191

set_value/2 ... 102

set_value_b/2 ... 105

setof/3 .. 169

signal/1 .. 168

signal/2 .. 168

start_processes/0 .. 177

stream_property/2 .. 120

strict_ground/1 .. 71

strict_nonvar/1 ... 70

sub_atom/5 .. 148

system/[0,1,2] .. 196

tempname /[1,2,3] .. 197

test_channel/2 .. 187

test_process/[1,2] ... 186

test_receive/[1,2].. 184

test_send/[1,2] ... 181

test_value/[1,2] .. 105

throw/1 .. 168

time_zone/2 ... 158

tread/[1,2] .. 134

tread_term/[2,3] ... 133

tread_token/[1,2] ... 135

true/0 ... 163

unbind/1 .. 112

unify_with_occurs_check/2 63

univ ... 76

var/1 .. 65

wall_clock_time/1 .. 154

write/[1,2] .. 137

write_canonical/[1,2] 138

write_term/[2,3] ... 136

writeq/[1,2] .. 138

247

General Index

!/0 ... 23

#define .. 43

#elif .. 45

#else.. 45

#endif.. 45

#if ... 45

#ifdef .. 45

#ifndef .. 45

#include .. 43

#undef ... 43

(:)/2 ... 22

(;) /2 ... 23, 24

(‘,’) /2 ... 23

(->) /2 ... 24

A

alarm clock ... 57

alias .. 28

alphanumeric characters.................................... 16

anonymous variable... 11

append mode ... 28

arithmetic expression .. 79

arity .. 11

associativity of operator 12

atom .. 10

atomic term ... 9

B

back quoted string ... 15

binary literal ... 9

binary stream .. 32

binding ..111

bracket .. 14

bracket directive ... 20

byte ... 32

C

C interface ...218

call ... 23

call sequence ... 22

callable term ... 22

channel ... 52

channel descriptor ..173

character ... 32

character code list ... 16

character code literal ... 9

character_code .. 32

clause .. 21

CLP extension ..231

CLP linear expression232

comment ... 15

communication data ...173

compiler .. 208

compound term .. 11

conjunction .. 23

constrained variable ... 232

Constraint Logic Programming extension 231

continuation escape sequence 18

control constructs ... 22, 23

CSPOPT .. 211

csppr.pdf... 212

current stream .. 28

cut .. 23

D

deadlock .. 56, 173

directive ... 19

discontiguous directive 21

disjunction ... 23

double quoted list token 16

double quoted string ... 15

dynamic directive .. 20

E

empty list ... 12

end token ... 15

end_of_file ... 15, 32

end_of_term... 15

endmod ... 19

environment variable 211

error .. 36

error term .. 33

escape sequences .. 17

event .. 52

extended characters 16, 17

F

fact .. 21

fail .. 24

flexible predicate.. 27

floating point number .. 9

foreign directive 20, 218

foreign predicate .. 218

functional notation ... 11

functor ... 11, 19

G

generic predicates .. 27

graphic characters .. 16

graphic token ... 10

ground term ... 11

group ... 22

H

head of the list ... 11

hexadecimal literal... 9

General Index

248

I

I/O mode ... 28

identifier ... 10

if-then ... 24

if-then-else .. 24

import directive .. 19, 26

in_byte .. 32

in_character .. 32

in_character_code ... 32

infix operator .. 12

integer literal .. 9

interrupt .. 57

L

linker ...210

list... 11

list notation ... 11

M

main_goal ... 18

main_goal/[0,1]..211

main_goal/1 ...212

memory stream ... 29

message .. 52

meta characters ... 17

meta_predicate directive 20

metacall .. 22

ML solver ..231

module ...9, 25

module end directive ... 19

module head directive 19, 25

module prefix .. 26

N

named variable .. 31

nil atom .. 12

number.. 9

O

occurs check .. 63

octal literal .. 9

open options .. 29

operator... 12

operator directive ... 20

operator notation .. 11, 12

option switch ..211

P

partial list.. 12

partially flexible predicate 27

past_end_of_stream... 32

postfix operator ... 12

predicate indicator... 19

prefix operator .. 12

prefixed call .. 22

prelude phase .. 50

preprocessor .. 43

principal functor .. 21

priority of an operator .. 12

problem variable .. 232

procedure ... 21

process ... 50

processor.. 51

programming environment 213

Prolog flag ... 160

proper list .. 12

public predicate .. 25

Q

quoted token .. 10, 15

R

read mode .. 28

read options ... 31

real time process 50, 51, 175

rule .. 22

runtime option ... 211

runtime system... 211

S

set_prolog_flag .. 21

single quoted token .. 15

singleton variable ... 11

solo characters ... 17

source/sink ... 28

specifier of an operator....................................... 12

standard streams .. 28

stream .. 28

stream alias .. 28

stream position .. 29

stream properties ... 30

T

tail of the list.. 11

term ... 9

term_precedes .. 72

text stream ... 32

token.. 15

trace... 216

true .. 24

U

unique name .. 55, 172

unit clause ... 21

user bracket ... 14

V

variable .. 11

virtual processor .. 51

W

white space characters.. 16

working phase.. 50

write mode ... 28

write options .. 31

NOTES

249

NOTES

250

	1. Syntax
	1.1 Term syntax
	1.1.1 Constant terms
	1.1.2 Variables
	1.1.3 Compound terms
	1.1.4 Lists
	1.1.5 Operators
	1.1.6 The predefined operators
	1.1.7 Brackets
	1.1.8 Tokens
	1.1.9 End token, end of file
	1.1.10 Comments
	1.1.11 Quoted strings
	1.1.12 Double quoted lists
	1.1.13 The CS-Prolog character set
	1.1.14 Escape sequences

	1.2 Program structure
	1.2.1 Directives
	1.2.2 User-defined predicates
	1.2.3 Control constructs

	2. Modules
	2.1 Visibility rules
	2.2 Exporting from a Module
	2.3 Module prefix
	2.4 Predicate import
	2.5 Flexible predicates
	2.6 Predicates with callable arguments

	3. Input/Output System
	3.1 Sources and sinks
	3.2 I/O modes
	3.3 Streams and aliases
	3.4 Standard streams
	3.5 Current streams
	3.6 Memory streams
	3.7 Stream positions
	3.8 Options on stream creation
	3.9 Stream properties
	3.10 Read options
	3.11 Write options
	3.12 Reaching end of stream
	3.13 Text and binary streams
	3.14 Character and term input

	4. Exception handling
	4.1 Format of error terms
	4.2 Additional information term on exceptions
	4.3 Error terms
	4.3.1 Instantiation error
	4.3.2 Type error
	4.3.3 Domain error
	4.3.4 Existence error
	4.3.5 Permission error
	4.3.6 Representation error
	4.3.7 Evaluation error
	4.3.8 Consistency error
	4.3.9 Syntax error
	4.3.10 Resource error
	4.3.11 System error
	4.3.12 Interrupt
	4.3.13 CLP System error

	4.4 Error handling procedures
	4.5 Error handling with catch/3
	4.6 Error handling with protected/3
	4.7 Signaling errors
	4.8 Error handling example

	5. Preprocessor
	5.1 Macros
	5.2 Include files
	5.3 Conditional compilation
	5.4 Predefined macro symbols
	5.5 Preprocessor command line options

	6. Introduction
	7. Basic notions
	7.1 Processes
	7.2 Phases in process creation
	7.3 Processors
	7.4 Termination of CS-Prolog programs
	7.5 Channels and messages
	7.6 Message passing
	7.7 Events

	8. The scheduling mechanism
	8.1 The process distribution
	8.2 The parallel execution
	8.3 System-wide common names
	8.4 Communication
	8.4.1 The channel handling
	8.4.2 The message transfer
	8.4.3 The event passing

	8.5 The deadlock detection
	8.6 Process deletion and program termination

	9. Other real-time features
	9.1 Time-outs
	9.2 Direct interrupts

	10. Introduction
	11. Format of description
	12. Term unification
	13. Type testing
	14. Term comparison
	14.1 Term order

	15. Term creation and decomposition
	16. Arithmetic evaluation
	16.1 Arithmetic expressions

	17. Clause retrieval and information
	18. Clause creation and destruction
	19. Global value handling
	19.1 Clist values
	19.2 Overview of predicate use

	20. Binding flexible predicates
	21. File selection and control
	22. Operator and bracket handling
	23. Atom processing
	24. Date and Time
	25. Prolog flags
	26. Control predicates
	27. Exception handling
	28. Solution collecting
	29. Parallel programming built-in predicates
	29.1 System-wide unique names
	29.2 Process goal
	29.3 Communication data
	29.4 Channel specifier
	29.5 The deadlock signal
	29.6 Error handling in real time processes

	30. Miscellaneous predicates
	31. Predicates for the CLP extension
	32. Files and directories
	33. Compiler
	34. Linker
	35. Runtime system
	36. Programming environment
	36.1 Environment commands

	37. Debugging
	38. The C interface
	38.1 The prototype of the C function
	38.2 Basic C definitions
	38.3 The C interface function set
	38.3.1 Functions accessing Prolog terms
	38.3.2 Functions for creating Prolog terms
	38.3.3 Functions for unification
	38.3.4 Functions for non-deterministic predicates
	38.3.5 Functions for backtrackable predicates
	38.3.6 Memory handling
	38.3.7 Raising exceptions
	38.3.8 Generating events and interrupts
	38.3.9 Calling a Prolog predicate from C

	38.4 Foreign predicate example

	39. The Constraint Logic Programming (CLP) extension
	39.1 New term type: constrained variable
	39.2 Special behavior of constrained variables

