
CS-Prolog II

The ML Linear Solver

Version 0.1

Supplement to User's Manual

ML Consulting and Computing Ltd.

Budapest, Hungary

January, 1999

CS-Prolog II The ML Solver

2

Contents

1. Introduction .. 3

2. The ‘normal’ interface predicates .. 5

3. Limitations and known errors .. 9

Chapter 1: Introduction

3

1. Introduction

The Constraint Logic Programming paradigm had been introduced by J.Jaffar et al. [J.Jaffar, S.Michaylov,

Methodology and Implementation of a CLP System, in J.L.Lassez (ed.) Logic Programming — Proceedings

of the 4th International Conference — Vol.1, MIT Press, Cambridge, MA, 1987].

An early version of CS-Prolog (around 1990) had included support for CLP over real numbers using a solver

based on linear programming methods. With the evolution of CS-Prolog towards multiple processes, this

support was discontinued.

Recently the need of providing a general mechanism for attaching CLP solvers to CSP-II had arisen. During

the implementation of this feature, we tried to revitalize the old solver as a testing tool. Due to internal

reasons (lack of time, lost documentation, unavailability of the original developers, etc.), this revitalization

has been only a partial success; there are some serious deficiencies and limitations. Nevertheless, we decided
to distribute the tool ‘as is’; we shall refer to it as the ML solver throughout the discussion. It can be used as

an example for those developing their own solver, or just for experimenting with the CLP paradigm. We

hope that in the future we’ll have the opportunity to improve the solver so that it can be used for real work.

This document describes the particular details of the implementation of the interface predicates for the ML

solver, not covered by the general description in the CSP-II User’s Manual.

The ML solver supports all normal CLP interface predicates, and no other interface predicates are defined

for it. (This must not be surprising given that the general interface has been defined as a generalization of the

original interface of the ML solver.)

The central concept of the CLP paradigm is constraint. A constraint is a Prolog term, normally containing

one or more variables, passed to the solver (in a clp_constraint/1 call). Each unbound variable seen by the

solver is associated with a newly created problem variable maintained by the solver. The association itself

is represented by binding the variable to a term of type constrained variable (which is added to the type

system as part of the CLP extension).

The solver incrementally builds the current (satisfiable) set of constraints from the individual constraints
passed to it. Each constraint describes some condition that must be satisfied, in a solver-specific form. The

solver will accept a new constraint only if adding it to the current set will result in a satisfiable set again. In

addition, if unification involving a constrained variable is attempted, the solver is called by the CS-Prolog

engine to verify whether the current set of constraints would remain satisfiable after the unification. If not,

the unification attempt fails. (This kind of unification is handled by the solver as a special constraint.)

The ML solver accepts structures as constraints where the main functor is one of (=:=) /2, (=<) /2, or

(>=) /2, and the arguments of the structure are CLP linear expressions, i.e. extended arithmetic expressions

that may contain unbound variables and constrained variables, but only in such a way that after ‘flattening’
the expression and evaluating the variable-free subexpressions, the result is a (possibly multi-variable)

polynomial, each addend of which has a summary degree of at most one. These structures represent

arithmetic equalities and (non-strict) arithmetic inequalities; the interpretation of the main functor is the

same as for arithmetic evaluation.

The solver uses arithmetic typing when the arithmetic equality is evaluated, in accord with the usual

meaning of (=:=) /2. Constrained variables can be unified with both integers and floating points (if the

current set of constraints remains satisfiable after the unification).

Changes made to the current set of constraints are backtrackable: any constraint added to the set during a call

is removed when backtrack over that call is performed.

Several interface predicates accept a class of structures called CLP evaluable linear expressions as one of

their arguments. These are similar to CLP linear expressions, with the difference that they cannot contain

unbound variables.

CS-Prolog II The ML Solver

4

Errors

Some error exceptions can be reported by the solver due to internal conditions for almost any interface

predicate call, and also for other calls attempting unification where constrained variables are involved. The

general form of these exceptions is the following:

clp_system_error

Other_info contains a list of the form [internal_error,ErrCode], where ErrCode is an integer code

specifying the particular error detected

These errors either occur because of exceeding an internal limitation, or are symptoms of an internal

programming error detected by the solver’s auto-diagnostic component itself.

Chapter 2: The ‘normal’ interface predicates

5

2. The ‘normal’ interface predicates

The ML solver supports all normal CLP interface predicates, and no other interface predicates are defined

for it. In this chapter the specific behavior of these predicates are described. There is some repetition in the

narrative text so that the basic functionality could be learned without referencing the corresponding chapter

of the User’s Manual, but only the specific error messages are included here.

clp_constraint/1

Description

clp_constraint(ConstrList)

This is the central element of the CLP interface, used for defining constraints for the currently selected

solver.

ConstrList is a list of structures (specific for the solver involved), each structure representing one

constraint. The ML linear solver accepts structures where the main functor is one of (=:=) /2, (=<) /2, or

(>=) /2, and the arguments of each structure are CLP linear expressions.

The solver analyzes the constraints contained in ConstrList, decides whether they are syntactically correct

and if so, whether adding them to the current set of constraints yields a consistent state.

If any error is detected, then an appropriate error is raised.

Otherwise, if the new set of constraints is inconsistent with the current status, then the call fails.

If no error is detected and the new constraints are accepted, then the call succeeds. Unbound variables

encountered in the new constraints become constrained variables (corresponding to new problem variables).

The predicate is backtrackable. After backtracking over the call the status of the model maintained by the

selected solver instance reverts to the status that was in effect before the call.

Template and modes

clp_constraint(+list)

Errors

domain_error(clp_relation_functor,Constr)

The main functor of constraint Constr occurring in ConstrList is not one of the relation functors accepted by the solver.
Other_info contains the indicator of the offending functor.

domain_error(clp_linear_expression,Constr)

One of the structure arguments in constraint Constr occurring in ConstrList does not comply with the definition of CLP
linear expression.

domain_error(proper_list,ConstrList)

ConstrList is either an open list (ending with an unbound variable) or an improper list (ending with a term other then
nil).

CS-Prolog II The ML Solver

6

clp_type/[2,3]

Description

clp_type(Expr, Type)

is equivalent with

clp_type(Expr, Type, _)

clp_type(Expr, Type, Extra)

Expr should be a CLP evaluable linear expression (not containing unbound variables). The solver qualifies

the expression (based on the current status of the constrained variables occurring in it), and returns an atom

representing the result of the classification. The returned value is unified with Type.

The ML solver returns one of the following atoms for Type: free, lobnd, upbnd, bounded, fix, number,

where number means that Expr is a fully evaluable arithmetic expression (with constant value), the other

categories correspond to value ranges like the ones described for the possible states of constrained variables

(see the chapter on CLP extension in the User’s Manual).

The solver at present unifies Extra with nil.

Template and modes

clp_type(+term, ?atom)

clp_type(+term, ?atom, ?List)

Errors

domain_error(clp_evaluable_linear_expression,Expr)

Expr does not comply with the definition of CLP evaluable linear expression.

clp_max/[2,4]

Description

clp_max(Expr, Value)

is equivalent with

clp_max(Expr, Value, [], _)

clp_max(Expr, Value, Query, Answer)

Expr should be a CLP evaluable linear expression (not containing unbound variables). The solver attempts

to calculate the maximal value that the expression can assume subject to the current set of constraints. If the

maximum does not exist (the expression has no upper bound) then the call fails, otherwise Value is unified

with the calculated maximal value. The Query argument can contain solver-specific query items (one item,

or a list of items) about the solution of the current set of constraints corresponding to the maximum found.

Answer is unified with the item, or with a list of items, that supply the answers to the query item(s)

contained in Query (see also clp_value/2).

The ML solver at present ignores Query and unifies Answer with nil.

Template and modes

clp_max(+term, ?number)

clp_max(+term, ?number, +term, -term)

Errors

domain_error(clp_evaluable_linear_expression,Expr)

Expr does not comply with the definition of CLP evaluable linear expression.

Chapter 2: The ‘normal’ interface predicates

7

clp_min/[2,4]

Description

These predicates are essentially the same as clp_max/[2,4] above, considering the equivalence

min { f(x) } == - max { -f(x) }

Template and modes

clp_min(+term, ?number)

clp_min(+term, ?number, +term, -term)

Errors

domain_error(clp_evaluable_linear_expression,Expr)

Expr does not comply with the definition of CLP evaluable linear expression.

clp_value/2

Description

clp_value(Query, Answer)

Query is a CLP evaluable linear expression (not containing unbound variables), or a list of such
expressions. If Query is a structure (one expression), then the solver evaluates the expression, substituting

values for the constrained variables in the expression from the feasible solution maintained as part of the

current state, and unifies Answer with the result of this evaluation.

If Query is a list of expressions then the solver builds a corresponding list of results evaluating each

expression as in the previous case, and unifies Answer with this list.

The ML solver at present accepts only single constrained variables or fully evaluable arithmetic expressions

as Query items.

Template and modes

clp_value(+struct_or_list, ?number_or_list)

Errors

type_error(clp_evaluable_expression,Query)

Query is an atom.

domain_error(clp_evaluable_linear_expression,Constr)

Query does not comply with the definition of CLP evaluable linear expression.

clp_system_error

Query is a list containing too many (more than 1000) items. Other_info contains the atom list_is_too_long.

clp_debug_mode/1

Description

clp_debug_mode(Flags)

Passes the value of Flags to the selected solver. The intent of this predicate is to give the user program some

control over any debugging facility provided by the specific solver.

The ML solver interprets the value of Flags as a set of flag bits. There is an interactive debugging feature

that allows the user to investigate different aspects of the internal state of the solver. Most of the defined flag
bits are assigned to certain events during the solver’s execution, and if the particular flag bit is on, then the

debugger is activated before and/or after the event is processed.

CS-Prolog II The ML Solver

8

Flag bit

value

 Event

1 New problem variable created (only ‘after’).

2 Consistency check when new constrains are added explicitly (‘before’ and ‘after’).

4 Consistency check for unification (‘before’ and ‘after’).

8 Backtracking (‘before’ and ‘after’).

64 (used during tests only, activates certain prepared printouts).

128 Prints the labels for all trace points, but does not activate the debugger if the

specific flag corresponding to the trace point is not set.

Flag bits not defined in the table above are ignored by the debugger facility.

Template and modes

clp_debug_mode(+non_negative_integer)

Errors

No specific error

Chapter 3: Limitations and known errors

9

3. Limitations and known errors

The ML solver can be active only in one CS-Prolog process at a time. It is activated implicitly when the first

‘significant’ interface predicate call is issued by the process. (All normal interface predicates are deemed

significant except clp_debug/1, though normally clp_constraint/1 is the one called first.) Since no method

is provided for explicitly deactivating a solver, the process using the solver must be terminated before

another process can activate it again.

The maximal number of internal variables maintained by the solver (problem variables and slack variables

together) at present is limited around 130.

The solver does not comply with the requirement that all normal predicates must be fully backtrackable. It

maintains a ‘feasible solution’ all the time as part of its internal state, but this is not reverted during

backtracking over querying calls. clp_value calls are evaluated for some simple queries against the current
feasible solution, in other cases a new feasible solution is located for composing the answer. Furthermore, in

the general case clp_type, clp_min, and clp_max all change the current feasible solution. The problem is that

these changes are not undone either immediately or on backtrack, so e.g. a clp_value can yield different

results depending on the execution history, when it should provide identical results.

	1. Introduction
	2. The ‘normal’ interface predicates
	3. Limitations and known errors

