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1. Introduction 

The description of the general CLP extension model for CS-Prolog and the set of system-provided CLP 

interface predicates are now included in the CS-Prolog II User’s manual as two separate chapters (The 

Constraint Logic Programming (CLP) extension and Predicates for the CLP extension) and in a Supplement 

(The ML Linear Solver). The corresponding parts are mostly removed from this document in order to 

simplify updating. Some parts, however, are repeated here with added internal details that concern only 

developers, or explanation of terminology, or just to help continuous reading. In case of ambiguity, the 

User’s Manual is to be considered as more up-to-date. 

 

The CS-Prolog runtime program can be configured to include one or several different CLP solvers (the 

technical maximum at present is four solvers, but this is only a matter of allocating a bit-field of appropriate 

width within an internal structure). 

For the sake of simplicity, when describing the interaction between different parts of the system, we shall 

speak of ‘the solver’ and ‘the core’, meaning the subsystem that is responsible for maintaining and 

repeatedly re-evaluating the set of constraining conditions, on one hand, and the component that keeps track 

of the active instances of the different solvers, dispatches requests originated by the Prolog program to the 

appropriate instance, and performs other system-related tasks, on the other hand. 

The CLP-related built-in predicates provided by the system can be divided into three groups. The first group 

is concerned with the term type system extension, and contains the following predicates: 

constrained_var(?term)  % c.f. var(?term) 

strict_nonvar(?term)  % c.f. nonvar(?term) 

strict_ground(?term)  % c.f. ground(?term) 

 

The second group consists of the predicates used directly in the work with the solvers: 

query_clp_config/4 

select_clp_solver/[0,1] 

 

The third group consists of the predicates used directly in the work with the solvers (the ‘normal’ CLP 

interface predicates): 

clp_constraint/1, 

clp_type/[2,3] 

clp_max/[2,4] 

clp_min/[2,4] 

clp_value/2, 

clp_debug_mode/1, 

 

The first two groups are entirely implemented by the core system; the predicates in the third group require 

cooperation between the core system and the particular solver. 

The Prolog interface for a solver may consist of some or all of the ‘normal’ predicates and the set also may 

be extended by defining specific predicates as ‘foreign’ ones.  In fact, the solver can entirely ignore the 

‘normal’ predicates. (Using ‘foreign’ interface is just a bit more complicated.) 

Each solver has a SolverId assigned to it by the configuration module. This SolverId is passed to the 

particular solver during the one-time initialization call, before the execution of the user program begins. The 

solver, which is, assigned the value 0 as SolverId is called the default solver; it is selected initially and can 
be selected by calling select_clp_solver/0 (without argument).  (The default solver is described by the first 

entry in the configuration table.) 

The actual properties of the solvers are specified in the configuration table; in the most general case several 

CS-Prolog processes can have instances of more than one solver running (but only one instance of each 
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particular solver), and each solver can be active in more than one CS-Prolog process (multithreading), and 

can ‘live together’ with instances of other solvers in one thread.  (Note that here and in the sequel, ‘thread’ is 

used as a synonym for ‘CS-Prolog process’ for short, not for the operating system’s thread concept.)  

Different instances of the same solver should be unrelated in the sense that problem-specific data from one 

thread should not be manipulated by an instance living on another thread. 

 

The supposed general behavior of a solver instance is as follows. 

The instance is initialized when the first ‘significant’ predicate call is issued by the user program in the 

thread. (If the solver defines its own interface predicates, then it must notify the core system and so trigger 

the initialization call from it).  The instance starts with an empty ‘model’ (system of constraints).  During 

‘forward’ execution, new constraints are incrementally added to the model. The solver evaluates the 

resulting constraint set, and, if it proves feasible, accepts the additions (the call succeeds), otherwise rejects 

them (fails). If the predicate that passes the new constraint - typically clp_constraint - succeeds then all 
unbound variables occurring in the passed constraints must be transformed into constrained variables. There 

is an internal interface function for this purpose. If the Prolog program later performs backtrack over a 

clp_constraint call, the solver must revert to the state that was in effect before that call. Removal of 

problem variables from the internal state during backtrack also must be reported to the core system. 

The core system can assist in this backtracking by calling a hook function if the solver had requested this. If 

the solver uses its own interface predicate for constraint addition, then it must organize backtracking itself 

by using the functions provided as part of the ‘foreign’ implementation set (see ‘csprolog.h’). 

Beside clp_constraint or its solver-specific counterpart, adding special constraints equivalent with the 

explicit form 

<constrained_variable> =:= <value> 

or 

<constrained_variable> = <value> 

can also be originated implicitly from Prolog unification (the actual form depends on which relation is 

understood by the solver).  From the solver’s point of view this case is not much different from the explicit 

predicate call, except that the calling environment is different (the set of usable ‘foreign’ interface functions 

is restricted), and that backtracking in this case will always be organized by the core. 

It is important, however, that the ‘observable’ state of the model after backtracking should be identical with 

the state before the call the effect of which had just been undone by the backtrack procedure.  (Internal 

details exposed by clp_debug are not considered as part of the observable state).  

The rest of the interface predicates serve only for querying; they should not change the actual state of the 

model.  (The ML solver does not comply with this requirement - after clp_max or clp_min the observable 

state changes, i.e., the result from clp_value is different). 

The clp_constraint/1 predicate takes as argument a list of structures (specific for the solver involved), each 

structure representing one constraint. The ML linear solver accepts structures where the main functor is one 

of  ( =:= ) /2,  ( =< ) /2,  or  ( >= ) /2,  and the arguments of the structure are CLP linear expressions, i.e. 

extended arithmetic expressions that may contain unbound variables and constrained variables, but only in 

such a way that after ‘flattening’ the expression and evaluating the variable-free subexpressions, the result is 

a (possibly multi-variable) polynomial, each addend of which has a summary degree of at most one. 

NOTE: 

As stated in the description of the extended unification rules for constrained variables, the solver 

never binds a constrained variable to numeric value directly because in the general case the exact 

type is not determined. With strict typing, we can consider automatic binding, but the consequences 

must be investigated first. 
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1.1 Problems with the added term type 

The introduction of additional type-checking predicates, as done presently, is an imperfect way of handling 

the problem of types. Someone has to analyze the question theoretically. 

When a term containing constrained variables is ‘output’ (e.g. using write_canonical) and then read back, 

the new term will not be equivalent with the original (although can be unified with it).  No renaming of 

variables can make the two terms equivalent as required by the standard. 

Backtrackable Prolog database updating operations should retain constrained variables like 
set_global_value_b/2 does, but in order to implement this behavior we would have to completely revise the 

compiler, so it is not done.  

Although I have scanned the implementation of built-in predicates that are written in C, and corrected many 

of them so that they treat constrained variables according to their specification, I know that this task is not 

completed. The problem is that there are local optimizations based on those assumptions about the term type 

system that are not valid with the extension.  In particular, I have not touched the external data base 

interface, and, as a specific example, I know that subatom/3 needs refurbishing. 

The solution-collecting predicates are completely baffled by constrained variables. I had no time even to 

think about how they should treat them. 

 

1.2 Problems and open questions pertaining to ‘normal’ CLP 
interface predicates 

The problems are centered on the notion of ‘observable state’.  It is tacitly understood in the specification of 

predicates above that the solver always maintains one particular feasible solution consistent with the current 

set of constraint, and all queries are answered using values for constrained variables from this solution. This, 

however, might put an unnecessary burden on the solver (the ML solver, for example, does not comply with 

this requirement). 

I can see two ways for simplification: 

1. In ‘clp_value’ we can lift the requirement that all answers pertain to the same solution, and simply 

tell that each answer corresponds to some feasible solution, not necessarily the same one. 

2. The optional 3rd and 4th arguments of ‘clp_min’ and ‘clp_max’ have been introduced based on the 

supposition that the components of the solution corresponding to the extremal value found are 

available only during the call; after the call the state of the solver reverts to the maintained feasible 
solution. This behavior can be redefined so that ‘clp_min’ and ‘clp_max’ drive the solver into a 

new state where the maintained feasible solution corresponds to the extremum found. If this 

approach is followed then there is no need for the optional arguments; the components of the 

solution can be queried using subsequent ‘clp_value’ calls (but in this case the individual answers 

must be consistent with each other). 
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2. The solver interface 

The solver must expose for the runtime system (the ‘core’) a table containing function pointers to specific 

functions (entry points).  The structure of this table is defined in the ‘clp_if.h’ header file. The table itself 

must be globally visible (for the link editor); i.e. it must have an ‘external’ symbol for its name. This name is 

used in the configuration module (initializes a field in the table entry for the solver). 

The core on its part also exposes a similar table, also described and declared in the ‘clp_if.h’ header. This 

table has the fixed name XxpClpCallbacks. The callback functions contained in this table can (or should) 

be called by the solver in specific circumstances.  

In addition to the callback functions, the solver can use the services of the runtime system exposed through 

‘csprolog.h’ for implementing ‘foreign’ predicates - not necessarily for that purpose. There are also 

functions specifically exposed for the benefit of solvers through the header file ‘arithm.h’.  Note that 
arithm.h exposes more than really necessary, especially by including another header file ‘xxp_uten.h’, 

simply because it was not designed for exposure. 

‘csprolog.h’ is explained in the User’s Manual (chapter ‘The C Interface’ - an update is being prepared). The 

other two will be shortly described in the following. 

In the course of interaction between the core and a solver, in most cases the core has to know which solver is 

being served (the actual instance is determined by the thread currently running). When the interaction is 

originated by one of the ‘normal’ predicate calls, then the core itself dispatches the request to the currently 

selected solver, so the solver is known.  Similarly, when a ‘core-assisted’ backtrack call is dispatched to the 

requesting solver, the solver’s identity is also known. 

However, if the solver obtains the control bypassing the core, via a ‘foreign’ predicate or during backtrack 

organized by itself, the core is ignorant about the identity of the solver requiring services, so this information 

must be communicated to it. 

Part of the service requesting callbacks is self-describing in this respect: the SolverId is explicitly included 

in the argument list. Others, however, rely on the status information maintained by the core. When control is 

obtained independently, then the solver has to announce itself before requesting any such service.  A pair of 

interface functions, sign_on and sign_off is introduced for this purpose. (The asynchronous reset service 

also relies on the identity of the currently running solver instance.) 

In the description of the interface functions that follows, we shall use the structure item names for the 

corresponding function name, the precise C syntax being somewhat clumsy. The actual function names 

supplied by the parties will be different. 

Some of the functions should return a value of type CspRetC. The interpretation of this value is explained 

in detail in the User’s Manual, in chapter “The C Interface”; here is a brief summary: 

There are two special values, XXP_E_SUCCEED and XXP_E_FAIL, that are considered both as ‘normal’ 

outcome of the function call.  Any other value returned will be treated as an indication of some error or 

extraordinary condition. Such exceptional values are usually prepared by calling one of the several 

‘xxp_error’ functions listed in ‘csprolog.h’ for different error categories, which prepare additional data for 

reporting the situation. 

The specialty of the interface functions is that they do not return this return code immediately to the 

interpreter as the outcome of the predicate call, but rather to the CLP dispatcher within the core as 

intermediate result. For the dispatcher, XXP_E_SUCCEED means that it should go on performing the 

actions necessary for serving the current predicate call. Any other returned value causes the dispatcher to 

finish the current course of actions in the shortest possible way and report the condition (failure or 

exception) to the interpreter. 

In order to support mixed integer/float arithmetic we’ve defined a union type XxpNumType for handling 
these values (see “arithm.h”).  The discriminator field, named ‘num_flag’, must be set to either XXP_T_INT 

(when the structure holds a [long] integer - in the pseudo-field ‘int_value’) or to XXP_T_FLOAT (when the 

structure holds a CspFloatType [double] - in ‘float_value’).  There is a short field named ‘user_data’, 

unused at present (in an earlier version we needed it); now it is available for any good purpose. 
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A note on terminology: 

After some hesitation, we selected the term ‘constrained variable’ for the special object introduced, 

but in some function names and other definitions the previous choice of ‘restricted variable’ is still 

present. Don’t be confused, they are the same. Also, in some places ‘constrained variable’ is 

abbreviated as ‘c-var’ or ‘CVAR’. 

2.1 Organization of backtracking 

 

The state of the model maintained by a solver instance must be synchronized with the state of the CS-Prolog 

evaluation stack for the host thread. This means that any change in the model caused by the evaluation of an 

interface predicate or a unification involving constrained variables must be ‘undone’ when the interpretation 

backtracks over the predicate that originated the change. The CS-Prolog interpreter maintains a special data 

area, called ‘trail’, for this purpose. This area is used in the first place by the interpreter itself for registering 

variable bindings that should be undone during backtrack, but special entries can also be inserted on behalf 

of the implementation of any built-in predicate that requires it.  (For more details, see “The C Interface” in 

the User’s Manual). 

The core offers a facility that can make the organization for backtracking easier than the general way. It has 

only one drawback: only one ULONG item is saved as user data in the trail entries for identifying the 

changes to be undone. In most cases, however, this is sufficient, because the solver will maintain its own 

internal stack, and the data item returned from the trail will be used only for identifying the appropriate stack 

level (or just for checking that synchronism is still correct).  

The recommended practice for any built-in predicate (and also for solver interface functions which are in 

effect parts of the implementation of a built-in predicate) to perform all validity checking before any change 

is effected in their internal state or in the environment. When this practice is followed faithfully, then trailing 

is needed only at the very end of a successful execution. The problem is that it is not always easy to keep the 

phases separated, because it would require the duplication of the components affected by the changes. In 
such cases, it is acceptable to perform the changes gradually, by stages, and make a trail note for each stage. 

The number of stages is still to be held at a practical minimum in order not to overtax the trail, which is the 

least recoverable resource of the interpreter. 

(Garbage collection cannot reclaim ‘dead’ entries from it, only effective backtracking will free the part used 

in the backtrack process.) 

If the solver is willing to rely on the core-assisted backtrack service, it can set up trail notes by calling the 

put_data_on_trail callback function. Several interface functions, as e.g. constraint, can also request final 

trail note through the special output arguments provided specifically for this purpose. The advantage of the 

latter method is that the core can combine its own backtrack data with the solver’s data in one trail note. 

The special output arguments for requesting ‘final’ trail note are represented by the same formal parameter 

names in all function prototypes where this facility is provided (the last two arguments), as in the following 

example: 

CspRetC constraint(xxp_cell Constr, Boolean *TrailingIndPt, 

   ULONG *TrailDataPt) 

TrailingIndPt is a pointer to a Boolean variable. If the called function (in this case constraint) places 

TRUE (or any other non-zero value) into this variable, and passes XXP_E_SUCCEED to the caller as the 

return value of the function, then the caller (some part of the core) will set up a trail note for the current 

interpretation status, and stores the value placed by the function into the ULONG pointed at by TrailDataPt 

(or sets up a combined trail note, used also for its own purpose). 

Later, if backtracking over this point occurs, the core will call the entry point backtrack provided by the 

solver, passing the saved ULONG value as the sole argument. 

Notes: 
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1. The trail request will be honored only when the called function indicates success by returning 

XXP_E_SUCCED.  For any other return value an immediate backtrack follows without setting up 

the final trail note. 

2. The Boolean variable pointed at by the output argument TrailingIndPt is initialized to FALSE as 

default value before calling the function. The ULONG pointed at by TrailDataPt is not initialized.  

3. If the solver does not intend to use the core-supported backtracking at all, then the backtrack entry 

in the interface table can be set to NULL. In this case, any trailing request to the core 

(put_data_on_trail call or implicit final trail request via the mechanism described here) will cause 

an error exception. 

 

2.2 Entry points into a solver, exposed via the interface table 

 

I. System initialization/termination 

int init_package(unsigned SolverId) 

This is the ‘one-time’ initialization function of the solver. It is called in the initial phase of the program 

execution, before the Prolog program execution actually begins. SolverId is the solver identifier value 

assigned to the solver by the CLP configuration  module. The solver should save this value; it will need 

it as argument in several calls. 

The function should return 0 if the initialization is successful.  Any other value returned will lead to 

immediate termination of the runtime system, with a generic error message. If the solver has additional 

information about the error then it can write it out directly to stderr. 

void terminate_package(void) 

This is the counterpart of init_package. Called immediately before the application exits; gives the 

opportunity for the solver to release any resources held, write out statistics, etc. 

 

II. Multithreading support 

 

If the solver supports multithreading, it needs separate data area for each thread where it has an active 

instance. The core offers assistance in creating new instances and in switching from one thread-specific area 

to the other (‘swapping’) when necessary. 

The solver might prefer to hold some frequently needed data items and pointers in a compiler-allocated 

static area, thereby eliminating one level of indirection when accessing these items. The static area is saved 

to a thread-specific shadow area when needed and is reloaded from the shadow area of the new thread when 

thread switching occurs.  The assistance for swapping is designed to help this kind of organization. 

An important aspect of the swapping strategy is that solvers do not need strict synchronization with the 

current Prolog process, because not all Prolog processes are associated with an active instance of a particular 

solver. If a solver has only one active instance then it won’t need swapping at all. 

void *init_instance(long DebugFlags) 

This entry point is called immediately before the core is going to dispatch the first ‘significant’ call to 

the solver and there is no active instance of the solver in the current thread, or at the request of the 
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solver itself when it obtained control independently of the core and decides that it needs initialization of 

a new instance (see the wake_instance callback later). 

DebugFlags is the argument saved from the latest ‘clp_debug’ predicate call (which does not cause 

instance initialization).  If there was no such call in the current thread before the instance initialization 

then the value 0 is passed. 

The solver should return a (void *) type value. The core does not interpret this value, simply saves it for 

the current instance, and presents it as one argument of a later swap request, if such will occur at all. 

The solver has full freedom in choosing this value, but the original intent is to return one of the 

following: 

 If the solver uses static data area and does not allocate a shadow area immediately, then it can 

return NULL.  For non-multithreading solvers no swap request will occur; otherwise when the first 

swap request comes and presents this NULL value, the solver can allocate an appropriate shadow 

area, save the content of the static area into it, and pass the address of the shadow area as the result 

from the swap request. 

 If the solver immediately allocates a thread-specific area (either as shadow area for the static area, 

or for direct use), then it should return the address of the allocated area, and use it without 

modification as the ensuing swap requests present it. 

 

Note: if init_instance is called because the core detected the ‘first significant predicate call’, it is not 

sure that an interface entry corresponding to that predicate will follow immediately. The core might 

reject the predicate call at a later phase, before the solver gets involved. 

void terminate_instance(void *user_area_pt) 

This is the counterpart of init_instance, with an important difference. init_instance is always called 

within the execution of the thread for which the new instance is to be installed; terminate_instance 

might be called when another thread is current. The user_area_pt argument contains the value saved 

from the latest preceding swap or init_instance call. The solver is expected to free any thread-

dependent resources (memory areas allocated). The thread associated with user_area_pt will not be 

activated any more after this call.  

void *swap(void *SaveToPt, void *LoadFromPt) 

This entry point is called by the core when it determines that the current instance of the solver is to yield 

control to another instance (of the same solver - different solvers do not interfere with each other). This 

can happen in two different situations. The first is when the Prolog process scheduler switches to a 

thread where there is a live instance of the solver, but up to this moment, another instance has been 

controlling the solver’s resources. The other situation is when a new instance is to be started in the 

current thread, and (as in the previous case) an other instance is controlling the solver’s resources. 

In both cases, the SaveToPt argument contains the value saved from the last swap or init_instance 

request for the instance being replaced. If it is NULL (only when saved from init_instance) then the 

solver should allocate memory area for saving any necessary data for the instance being replaced, 

otherwise it can use the area pointed at by SaveToPt (it can also reallocate the area if necessary). In any 

case, the thread-dependent data must be saved, and the address of the current save area must be passed 

back to the core as return value. (If the solver accesses all thread-dependent data through this pointer, 

then nothing needs to be saved.) The return value from swap cannot be NULL.  To state it in one 

sentence: swap offers the possibility for the solver on each occasion to change the save area for the 

instance being replaced, and stores the address of the new area, which, however, must not be NULL. 

If LoadFromPt contains NULL, this indicates that a new instance is to be initialized, i.e., an 

init_instance call will follow immediately. In this case, the solver is supposed to prepare any common 
resources for accommodating a new instance.  Otherwise, when LoadFromPt is not NULL, then we 
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face the situation of thread switching, and LoadFromPt contains the value saved for the instance that is 

to be activated. After saving all necessary data for the old instance, the solver is expected to fetch all 

data that needs reloading from this area. 

For a non-multithreading solver, this table entry must be set to NULL. 

 

III. Support for ‘normal’ interface predicates 

 

If the solver does not support some of the interface predicates listed in this part, the corresponding entry in 

the interface table should be set to NULL. 

CspRetC constraint(xxp_cell Constr, Boolean *TrailingIndPt, 

   ULONG *TrailDataPt) 

This entry is called when the core encounters a clp_constraint call, finds it valid as far as its 
competence goes, and any necessary preparations are already performed (swap request, instance 

initialization). 

Constr contains the (pre-checked) argument from the call of the original clp_constraint predicate.  Pre-

checking ensures that Constr is a non-empty list (empty list is simply accepted by the dispatcher and 

success is indicated).  In the case of solvers qualified as ‘xenophobic’ in the CLP system configuration 

module, it is also ensured that Constr does not contain any ‘alien’ constrained variables belonging to 

another solver.  Note, however, that pre-checking does not filter out improper lists (the final element of 

which is not nil). 

The solver is expected to analyze the constraints contained in Constr, decide whether they are 

syntactically correct and if so, whether adding them to the current set of constraints yields a consistent 

state. 

If any error is detected by the function, then an appropriate error code should be returned. 

Otherwise, if the new set of constraints is inconsistent with the current set, then the call should return 

XXP_E_FAIL. 

If no error is detected and the new constraints are accepted, then XXP_E_SUCCEED is to be returned, 

and the solver has the option of requesting the dispatcher to set up a ‘final’ trail note and pass the 

ULONG value to be saved in that trail note. Intermediate trail notes should be set up by calling 

put_data_on_trail at the appropriate points. (See ‘Organization of backtracking’ earlier). 

Unbound variables encountered in the new constraints are going to become constrained variables 

(corresponding to new problem variables) if the call succeeds. This act requires careful organization. 

The factors to be considered are the following: 

When a variable is transformed (by the mk_restr_var callback function), then all instances of the variable 

occurring in the input constraint set (Constr) become associated with the problem variable (i.e. all instances 

are transformed at the same time). 

 Usually it is impossible to delay this transformation until the success of the call is ensured, so 

preparations for undoing the effect are required, preferably without involving the trailing 

mechanism (for efficiency’s sake). 

 Further complication is caused by the fact that the solver might lose control without explicitly 

returning, due to some exception raised directly inside a called support function (a rare event, but 

not impossible). The asynchronous reset service is provided to cope with such events (for undoing 

unfinished and untrailed transactions).  

 

It is supposed that the problem variables maintained by the solver are identified by some small non-

negative integers (index values).  This value must be less than CLP_MAX_SOLVER_VARS (defined 
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in “clp_if.h”), and the total number of such variables must not exceed CLP_MAX_PROBLEM_VARS 

(op. cit.). 

‘Undoing’ the creation of new constrained variables is performed by calling the 

remove_last_restr_vars callback function.  The use of this function must be strictly synchronized with 

the creation of those variables: it can be called only immediately before or after backtracking over the 
point where the variables concerned had been created. (Remember that raising an exception also 

involves backtracking.) 

CspRetC type(xxp_cell Expr, xxp_cell *TypeCellPt, Boolean NeedsExt, 

 xxp_cell *ExtCellPt, Boolean *TrailingIndPt, 

 ULONG *TrailDataPt) 

This function is called for the ‘clp_type’ predicate.  Expr is the pre-checked expression the type of 

which is to be determined. Pre-checking ensures that Expr is a structure, or a constrained variable, or a 

number, and, for ‘xenophobic’ solvers, that it does not contain ‘alien’ constrained variables. 

The result of the evaluation should be a solver-dependent atom (as: ‘free’, ‘lobound’, ‘fixed’, etc.), 

placed in *TypeCellPt. Argument NeedsExt indicates whether or not additional information is 
requested by the caller. Additional data (solver-dependent term, preferably list) should be placed into 

*ExtCellPt. For the last two arguments see ‘Organization of backtracking’ earlier. 

CspRetC value(xxp_cell Arg1, xxp_cell Arg2, Boolean *TrailingIndPt, 

  ULONG *TrailDataPt) 

This function is called for the clp_value predicate. Arg1 is the pre-checked first argument of the 

predicate call.  Pre-checking ensures that Arg1 is a structure or a non-empty list or a constrained 

variable (numbers and the empty list are handled directly by the dispatcher), and in case of 
‘xenophobic’ solver, that it contains no alien constrained variable.  Arg2 is the second argument of the 

predicate call (for the result), unchecked. 

The reason why Arg2 is passed directly instead of an xxp_cell pointer for the constructed result is that 

some local optimization is possible when treating e.g. a (partially) filled answer list.  For the last two 

arguments see ‘Organization of backtracking’ earlier. 

CspRetC max_or_min(xxp_cell Expr, XxpNumType *ValuePt, Boolean IsMax, 

  Boolean NeedsExt, xxp_cell *ExtCellPt, 

  Boolean *TrailingIndPt, ULONG *TrailDataPt) 

This function is called for the clp_max and clp_min predicates; argument IsMax indicates which one 

exactly (TRUE for clp_max, FALSE for clp_min).  

Expr is the pre-checked first argument of the original predicate call. Pre-checking ensures that Expr is 

a structure, a number, or a constrained variable, and, for xenophobic solvers, that it does not contain 

‘alien’ constrained variables. 

The calculated extremal value is to be placed into *ValuePt. 

The role of the remaining arguments is the same as for type. 

void debug_mode(long Flags) 

This function is called for the clp_debug_mode predicate if the solver is already active. (‘Early’ calls 

are intercepted by the dispatcher, and the last Flags value is passed to the solver at instance initialization 

time.) Flags is the value of the (non-negative) Prolog integer argument of the predicate call. 

 



CSP-II System Documentation  The CLP Solver Developer’s guide 

14 

IV. Miscellanea 

CspRetC unification(xxp_cell Term1, xxp_cell Term2, 

   Boolean *TrailingIndPt, ULONG *TrailDataPt) 

This function is called directly by the CS-Prolog engine when unification of a constrained variable 

owned by the solver is attempted either with another such constrained variable, or with a number when 

the status of the constrained variable is not FIXED. 

Term1 is always a constrained variable, Term2 is the other term (number or constrained variable). If 

both are c-vars, and at least one of them is not FIXED, then Term1 is not FIXED (Term2 cannot be 
‘less-determined’ than Term1).  It is supposed that the solver treats this call as a special case of a new 

constraint received. If Term2 is a number and the function returns success indication, then the c-var in 

Term1 becomes (conceptually) bound to the number. 

It must be considered that this function is called from a more restricted environment than the others are, 

so resource-intensive operations and other extravagant functions are to be avoided.  (The exact rules are 

not established - sorry. The main example of ‘extravagant’ function is calling Prolog from C.) 

For the last two arguments see ‘Organization of backtracking’ earlier. 

void backtrack(ULONG TrailData) 

This function is called when the interpretation backtracks over a point for which a core-supported trail 

note has been set up for the solver (see ‘Organization of backtracking’ earlier).  TrailData is the value 

stored in the corresponding trail note. 

The environment from which this function is called is also restricted, like that for unification. 

void reset(void) 

This function is provided for coping with the problem of loosing the control unexpectedly due to an 

internal exception during the elaboration of some function call with side effects (see also the description 

of constraint for details).  

The function is called during the handling of a raised exception, immediately before starting the 

replacement call (after all necessary backtracking), if 

(1) The solver did not inhibit this service by specifying NULL in the table entry, and 

(2) The dispatcher is aware of the fact that the solver had been ‘hit’ by the exception, i.e. the exception 

occurred while the solver had been performing some action. See the introductory part to the solver 

interface description for details about when does the dispatcher know the active solver. 

This function can perform any necessary clean-up actions for which preparations had been made in 

advance. 

The environment from which this function is called is also restricted, like that for unification. 

Boolean is_rst_var_fixed(unsigned Index, XxpNumType *ValuePt) 

This function is called by the dispatcher during special unification processing; it requests information 

about the status of the problem variable identified by Index. If the status is FIXED then the function 

should return TRUE, and place that fixed value into *ValuePt. Otherwise, the function should return 

FALSE. 
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Boolean strict_numeric_types(void) 

This function informs the dispatcher about a static attribute of the solver, namely whether ‘Prolog’ or 

‘arithmetic’ typing is used for numeric values (see earlier). The return value should be TRUE for 

‘Prolog’ typing and FALSE for ‘arithmetic’ typing. 

char const *description(void) 

This function should return a null-terminated character string containing a BRIEF description of the 

solver (copyright, version, product name, etc.). At present, this function is called when the ‘-ver’ 

command line option is specified for running a program (to display version data on stderr). 

 

2.3 Callback functions (entries in the ‘XxpClpCallbacks’ table) 

void mk_restr_var(xxp_cell VarCell, unsigned Sid, unsigned Index) 

This function should be called when an unbound variable occurring in a new constraint is to be 

transformed into a constrained variable associated with a problem variable (newly created by the solver 
- see constraint for details).  VarCell is the variable in question, Sid is the solver ID of the solver, and 

Index is the identifier of the problem variable assigned by the solver. Index must be less than 

CLP_MAX_SOLVER_VARS, and the total number of ‘live’ problem variables must not exceed 

CLP_MAX_PROBLEM_VARS. 

void remove_last_restr_vars(unsigned Sid, unsigned NVars) 

This function should be called when - during backtrack or internal undo processing - some problem 

variables (already associated with constrained variables) are discarded by the solver.  Sid is the solver 

ID of the solver, NVars is the number of problem variables discarded in one batch. Note that only the 

‘newest’ problem variables can be discarded (in reverse order compared to the corresponding 

mk_restr_var calls).  See also constraint for more details. 

Important note: the solver is not allowed to discard problem variables at will after creation. Constrained 

variables associated with a particular problem variable will be ‘unbound’ only by the interpreter during 

backtrack; discarding the problem variable must be as tightly synchronized with this event as possible. 

unsigned restr_var_ind(xxp_cell CvarCell, unsigned Sid) 

This function returns the identifier (index) of a problem variable associated with the constrained 

variable CvarCell. Sid is the solver ID of the solver owning the problem variable.  

If CvarCell is not a constrained variable, then an exception is signaled directly (the control will not 

return to the caller).  If CvarCell is an ‘alien’ c-var (for Sid), then the special value 

CLP_ALIEN_VAR_IND is returned (defined in “clp_if.h”). 

void sign_on(unsigned Sid) 

This function should be called if the solver obtains the control bypassing the dispacther, if any services 

requiring that the dispatcher know about the identity of the active solver, are going to be used (including 

the asynchronous reset service).  See the introduction to the solver interface for details. 
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sign_on must not be called when the control is obtained from the dispatcher (such call causes an error 

exception).  sign_on also must not be called before the initialization of the solver instance (see 

wake_instance later). 

void sign_off(unsigned Sid) 

This function must be used in tandem with sign_on above.  It is an error (not always detected) if any 

top-level function returns control to the system while the solver is ‘signed on’.  In the case when the 

solver loses control because of exception, the missing sign_off is supplied by the system (actually, it is 

exactly what triggers the reset call). 

sign_on/sign_off pairs cannot be nested! 

CspRetC wake_instance(unsigned Sid) 

This function should be called when the solver receives the control via a foreign predicate call, 

bypassing the dispatcher, and there is a possibility that the instance of the solver for this thread is not 
initialized yet. Sid is the solver ID of the solver. The dispatcher for this call checks the status of the 

instance. If it is already initialized, then simply returns with XXP_E_SUCCEED.  Otherwise, the 

dispatcher performs the necessary initialization, in the course of which the solver’s init_instance entry 

point is also called. 

void put_data_on_trail(ULONG TrailData) 

This function can be used as a simplified method for setting up a trail note (see ‘Organization of 

backtracking’ earlier). The value of the TrailData argument will be stored in the trail note, and the 

same value will be passed back to the solver in the corresponding backtrack call. 

Note that this service requires that the identity of the solver be known to the dispatcher (no Sid 

argument is passed). 

void signal_numbered_error(long ErrNumber) 

This is just a commodity function, an envelope for calling xxp_signal as  

xxp_signal(xxp_clp_sys_error(xxp_mk_int(ErrNumber))); 

for raising ‘clp_system_error’ with the integer number ErrNumber as ‘other-info’. This function can 

be used for signaling internal errors with numerically coded error message (useful during development 

mainly).  

 

NOTES: 

1. By a process of gradual transformation, all regular services except put_data_on_trail have become 

‘self-describing’.  For the sake of regularity of the interface, this last one also might be rendered self-

describing, but the sign_on/sign_off protocol is still needed for reset (and maybe for later extensions). 

2. It seems now that the function of wake_instance can be merged into the function of sign_on. 

 

2.4 Support functions for arithmetic evaluation (“arithm.h”) 
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The main advantage of using the system-provided arithmetic evaluation functions instead of implementing 

special evaluation for the solver is in consistency: the same operators and arithmetic functions are 

recognized and evaluated with the same error handling, range checking, etc. 

It must be said, however, that the system functions are probably slower, so for simple calculations local 

evaluation is better. 

Most of the support functions in this group return a CspRetC value as primary result; the actual result of 

arithmetic evaluation is placed into an output argument. The ‘normal’ outcome of the evaluation is indicated 

by XXP_E_SUCCEED, or, in the case of relation, also by XXP_E_FAIL (indicating that the relation does 

not hold, but the evaluation was performed normally). Any other return value indicates some error or 

exceptional condition encountered during evaluation.  In this case the arithmetic module prepares an 

exception and returns the corresponding exception code (see chapter “The C Interface” in the User’s manual 

for details). 

The caller can pass this exception code as return code to the system, where the exception will be raised 

immediately, can raise the signal directly, or can take corrective action itself (and reset the prepared 

exception), or prepare another exception to replace the original one. 

There are two specific errors that a solver might want to handle directly. Let’s suppose that Expr is the 

evaluated term, and the return code is saved in the variable rc. 

(1) Unbound variable is encountered in Expr: 

 XXP_ERROR_KIND(rc) /* -> XXP_E_INSTANTIATION */ 

 

(2) Constrained variable is encountered in Expr: 

 XXP_ERROR_KIND(rc) /* -> XXP_E_TYPE */ 

 error_term = xxp_get_error_term(rc); 

 

The prepared error term placed into error_term has the following form (in Prolog syntax): 
 type_error(evaluable,CVAR) 

where CVAR (the ‘culprit’) is the offending constrained variable (of type XXP_T_RESTR). 

 

The evaluation of relation expressions requires that the main functor of the expression be passed as a 

separate argument in coded form.  The symbolic code values are defined in the header file “xxp_relc.h”. The 
reason for this redundancy is that the solver usually has to analyze the expression anyway (and usually 

restricts the set of allowed relations), so it can have the code for no extra cost. 

 

I. General term evaluation 

CspRetC xxp_eval_expression(xxp_cell Expr, XxpNumType *Resultp) 

Expr is a term; it is expected to be an arithmetically evaluable expression. If so, the function returns 

XXP_E_SUCCEED, and places the value of the expression into *Resultp. Otherwise the function 

prepares an exception and returns the corresponding exception code. 

CspRetC xxp_eval_relation(unsigned RelCode, xxp_cell RelExpr) 

RelExpr is a term; it is expected to be a structure the main functor of which is a (binary) arithmetic 
relation and the arguments of the structure should be arithmetically evaluable expressions. RelCode is 

the coded value corresponding to the main functor (the correspondence is not checked by the function).  

If no error or exceptional condition is encountered during the evaluation, then the function returns either 

XXP_E_SUCCEED (when the relation holds between the arguments) or XXP_E_FAIL (when the 

relation does not hold). Otherwise the function prepares an exception and returns the corresponding 

exception code. 
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II. Evaluation of simple expressions with numeric arguments 

CspRetC xxp_eval_unary_expr(xxp_cell func, XxpNumType narg, 

    XxpNumType *Resultp) 

This function can be used to evaluate a simple unary expression with a numeric argument. func is the 

main functor of the expression, as e.g. (-)/1 or ‘abs’/1; narg is the number constituting the argument of 

the expression. 

The role of Resultp and the return code are the same as for xxp_eval_expression above. 

CspRetC xxp_eval_binary_expr(xxp_cell func, XxpNumType narg1, 

   XxpNumType narg2, XxpNumType *Resultp) 

This function is similar to xxp_eval_unary_expr above, but for binary expressions.  narg1 and narg2 

are the numbers constituting the first and the second arguments of the expression, respectively. 

 

Boolean xxp_eval_binary_relation(unsigned RelCode, 

    XxpNumType Left, XxpNumType Right) 

This function can be used to evaluate a simple relational expression, with numeric arguments. RelCode 

is the same as for xxp_eval_relation above; Left and Right are the first and the second arguments of 

the expression, respectively. 

The function returns TRUE if the relation holds, otherwise the return value is FALSE. 

 

III. Helper functions 

xxp_cell xxp_checked_mk_num(XxpNumType val, 

    unsigned argno, CspRetC *rcp) 

This is a commodity function enveloping xxp_checked_mk_int and xxp_mk_float (see “The C 

Interface”). 

CspRetC xxp_get_checked_num_val(xxp_cell cell, unsigned argno, 

XxpNumType *Resultp)  

This is a commodity function enveloping xxp_int_val and xxp_checked_float_val (see “The C 
Interface”), with the roles of the return code and the output argument reversed (in order to avoid 

returning structure from the function. 

 

IV. ‘Quick’ unification for numbers 

CspRetC xxp_unify_num(XxpNumType val, xxp_cell xc, unsigned argno) 

CspRetC xxp_unify_int(XxpNumType iv, xxp_cell xc, unsigned argno) 

CspRetC xxp_unify_float(XxpNumType fv, xxp_cell xc) 

These functions can be used instead of the general xxp_unify function when one of the terms to be 

unified is known to be a number, or more specifically an integer or a float number, respectively. The 

functions make use of the additional knowledge so they are more efficient. In some cases, float creation 

is avoided.  
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The last two (‘specific’) functions do not check the actual type of  the number passed in the first 

argument; they rely on the caller.  When an integer value is being unified (first argument), the value is 

checked for the proper range, and an integer overflow exception is returned if the check fails. The 

argument position in the prepared exception data is taken from the argno argument. 
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3. Programming conventions 

In a later phase of the CS-Prolog development process, we became aware of the possibility of external name 

conflicts between the runtime core and extensions implemented by the user or other developers (e.g. 

implementation of foreign predicates). From that time we tried to restrict the form of external names used in 

the core, to specific forms, beginning with the prefix Xxp, XXP, xxp_, and the like, but there are still a lot 

of undisciplined external symbols around. In any case, it is highly recommended that the solver program 

also use some kind of common prefix, hopefully differing from any other extensions with which it might 

have to live together. 
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4. Macro definitions for compiling the sources 

The following macros should be defined e.g. on the command line invoking the C compiler: 

-DRUNT -DCONSTRAINT 

For the compilation of the CLP configuration module “clp_cfg”, the definition of CONSTRAINT above sets 

a default value of N_SOLVERS=1.  If this is inappropriate, then either an additional command line 

definition should be given, e.g. 

-DNSOLVERS=2 

or the definition of N_SOLVER in “clp_cfg.c” can be changed and activated (‘uncommented’). 
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