

CS-Prolog II

Version 2.3

Graphical User Interface

ML Consulting and Computing Ltd.

Budapest, Hungary

May 1998

Chapter 1: Introduction

1

Contents

1. Introduction .. 2

2. Programming environment .. 3

2.1 Projects ... 3

2.2 Generating code ... 4

2.3 Executing programs .. 4

2.4 Options .. 4

2.5 Starting the GUI environment .. 5

3. Multi-window trace ... 6

4. Web browser as CS-Prolog GUI component ... 7

4.1 Organization .. 7

4.2 Writing form handlers with the PiLLoW library .. 8

4.3 Generating HTML document from Prolog terms.. 9

4.3.1 General structures ... 9

4.3.2 Specific structures ... 11

4.4 Using PiLLoW in CS-Prolog II ... 13

4.5 Using the DCG converter .. 14

CS–Prolog II Graphical User Interface

2

1. Introduction

CS-Prolog II is a console application that lacks any graphical user interface features. The

CS-Prolog compiler, linker and runtime system get their arguments from the command line;

all input/output is performed through files, including the standard input and standard output.

There are two important areas where this simple approach can be and must be improved. First

is the programming environment; the second is a window-based graphical input/output for

CS-Prolog user programs.

The most significant part of a programming environment is the debugging facility. In

CS-Prolog several processes may run in parallel. Their trace output appears intermixed on the

standard output making it difficult to sort out the information. So the main goal for the

CS-Prolog programming environment is to implement a multi-window trace tool, where

different processes send their debugging information to different windows. In the first version

a simple project management is implemented, too, helping the user in working with programs

consisting of several modules. The standard make utility is used with automatically generated

makefiles. The programming environment is implemented in C++ and uses the Motif library.

The CS-Prolog input/output system is synchronous stream input/output, the predicates block

the execution of the calling process. In a real-time application dealing with asynchronously

incoming events this is not acceptable. Therefore we decided to separate the visual

component implementing the graphical user interface and the CS-Prolog program itself. The

GUI component interacts with the CS-Prolog applications using network communication.

We adopted the idea of the PiLLoW Library worked out by Daniel Cabeza, Manuel

Hermenegildo and Sacha Varma at Computer Science Department of Technical University of

Madrid (UPM), Spain. PiLLoW provides facilities for generating HTML structured

documents, producing HTML forms, and writing form handlers, thus making possible to use

a web browser for GUI purposes. One drawback of this approach is that a web server is

needed on the network.

The work on the extensions described in this supplement had been partially funded by the EU

in the framework of the INCO-Copernicus project Expernet: A Distributed Expert System for

the Management of a National Network, No 960114.

Chapter 2: Programming environment

3

2. Programming environment

The main window of the programming environment consists of a menu, a text box where the

output information is displayed and, at the bottom of the window, the module list box where

the module names of the current project are enumerated.

The main menu of CS-Prolog programming environment consists of the following menu

elements:

File

Project

Execute

Make

Options

About

The File submenu contains a single operation: Exit, to quit the environment.

The Project submenu contains the operations for handling CS-Prolog projects: creation of

a new project, opening of an existing one, deleting a project, adding and removing source

modules to and from the project, and specifying local options.

The Execute submenu operations serve for executing and tracing CS-Prolog programs.

The Make submenu contains operations for compiling and linking the source modules,

removing the generated files.

With Options submenu elements the user can specify parameter settings for the current

project or globally for any new project.

2.1 Projects

The basic object handled in the CS-Prolog II programming environment is the project.

Projects consist of CS-Prolog modules that form the CS-Prolog program and they

accommodate some other information as: compiler options, runtime command line options,

header file dependencies, break points, etc.

Projects are created with the New menu operation; modules have to be added with Add

module menu element. The file names of a project’s modules are enumerated in a list box at

the bottom part of the main window. If in this list box a module is selected then this module

can be deleted with the Remove module menu item. Local compilation options can be

assigned to a module with Local options … menu item.

The environment finds out the dependency structure of a project, i.e., which include files a

specific module depends on. This dependency information is utilized when creating the

makefile that generates the program (see next section). Suppression of inclusion of an include

file into the makefile can be done with Include files … menu item.

A project can be saved explicitly with Close operation and it is automatically saved if a new

project is created or another project is opened with the Open operation.

CS–Prolog II Graphical User Interface

4

2.2 Generating code

The environment creates a makefile based on the project information. The standard Unix

make utility can read this makefile and generate the compiled mdf and linked pdf files.

From the programming environment the code generation can be initiated with the Build

element of the Make submenu. Only those files will be regenerated that are out of date (as it

is usual with the make utility). The Rebuild All menu item will regenerate all files, even

those that are up to date. The Compile and Link menu items are used for the compilation

of a module and linking the program, respectively.

The Clean menu element has a submenu itself; the user can choose between cleaning all

generated files, or cleaning only the intermediate files, preserving the executable CS-Prolog

program.

The makefile can be used outside the CS-Prolog environment as well. Its name is

<project_name>.mak

The targets for the make utility using this makefile can be: build, rebuild, clean,

realclean and exec. These targets correspond to the environment operations explained

above, (the exec target will execute the program).

2.3 Executing programs

The Execute main menu element consists of three operations: Run (execute without

debugging), Trace (execute with debugging) and Dialog… (execute via a dialog box). In

the latter operation the user can specify command line options for the program to be executed

or traced.

If a program is always run with the same command line arguments then these arguments can

be hardwired setting an execute option (see next section). In this case the program can be

executed or traced without having to type in explicitly the arguments.

The executed program inherits standard input and standard output from the terminal where

the environment was called from. So if the program writes out to or reads in from the

standard stream, it appears on the stdout or must be typed in the stdin of the original

terminal.

The trace system of the programming environment is discussed in chapter 3.

2.4 Options

The Option main menu element has two submenus: Project options and

Workspace options. Both offer three further operations: Compile options…,

Build options… and Execute options…. Workspace options are the settings that

will be default for any newly created project. These default options can be changed later with

Project options operations.

In the compiler options dialog box the user can set the option values for the CS-Prolog

compiler. In build options dialog the names of generated files can be changed, and traced

code generation can be switched off.

Chapter 2: Programming environment

5

In execute options dialog box the user can set the name for the CS-Prolog runtime system (if

it is not the default one) and specify command line argument for the execution.

The workspace option submenu contains one more item: the Customize… action. In the

customization dialog box the user can set properties of the programming environment itself.

Most of these properties are represented by toggle buttons; the following features can be

switched on or off:

automatically build the project if it is out of date and it is executed;

automatically rebuild the project if it was built without trace and now it is executed

with trace;

save debug breakpoints when the project is closed;

display the module list box at the bottom of the main window;

write verbose messages to the information text box;

ask for confirmation if a project is deleted;

ask for confirmation if a Quit trace action is initiated;

ask for confirmation if a trace window is closed;

automatically load the last project on startup or automatically load a project file if it is

unique in the current working directory.

The last property is the menu bar dimming. By default the environment disables its main

menu when an external action is performed: program building or program execution. The user

can set the time delay of the dimming, or can switch off this feature.

2.5 Starting the GUI environment

The executable normally resides in the home directory of CSP–II. It can be started from

xterm using for example the following console command:

…

All the usual xterm environment arguments can be used in the command. The default

background color is blue. If more than one application is being debugged then it is a good

idea to use different background colors for each (trace windows inherit the background from

the main window).

CS–Prolog II Graphical User Interface

6

3. Multi-window trace

The most significant subsystem of the CS-Prolog programming environment is the

multi-window trace. It offers a menu-driven tracing window where the trace information is

displayed. The different CS-Prolog processes have independent trace windows, so their

debugging information is separated from each other (see also the chapter on debugging in the

User’s Manual).

A trace window appears on the screen whenever a process begins its execution. Initially the

trace window of the main process is displayed. Trace windows have a main menu with the

following items. (Each menu item represents an action that is available in normal text based

debugging described in CS-Prolog User’s Manual.)

Trace

Single step execution. Trace will stop at the entry port of the predicate called

next.

Skip

Skip the trace of the current call. Trace will stop at the entry port of the predicate

called next, after the termination (successful or failed) of the current call.

Quit

Abort the debugging and the execution.

Go

Go without trace. Trace will stop at the entry port of the next break point.

Prolog

Enter a Prolog session. CS-Prolog goals can be executed. This session however

takes place outside the environment, on the terminal where the environment was

started. (The session can be finished by entering the halt. command.)

Breakpoint

Set or clear break points in a dialog box. The breakpoints can be set in two

modes: selecting the predicate in a list box, or writing explicitly the functor. In

the first case however only the statically compiled predicates are enumerated in

the list box.

Close

Close the trace window. The execution will continue, but the process this trace

window was associated with will not be debugged from now on.

Chapter 4: Web browser as CS-Prolog GUI component

7

4. Web browser as CS-Prolog GUI component

Real-time programs that react to asynchronous events should not be allowed to perform

input/output operations that can block the application for a long time. The basic input/output

predicates of CS-Prolog, however, are blocking the caller application on mono-processor

hosts, e.g., when manual input is awaited from an operator. The solution for this problem can

be the separation of the application component which interacts with the user from the

real-time components, and organizing communication between them using network

connection.

The idea of using a web browser as a graphical user interface component for CS-Prolog was

suggested by Manuel Hermenegildo. He and his colleagues at the Technical University of

Madrid (UPM) implemented a Prolog library named PiLLoW that provides facilities for

generating HTML documents (pages) and handling HTML forms. The PiLLoW system is

described in details at the following URL:

http://www.clip.dia.fi.upm.es/miscdocs/pillow/pillow.html

The web browser can display HTML documents containing HTML forms where the user

specifies his/her data to be sent to the CS-Prolog application. When the form is submitted the

browser executes the associated form handler — a shell script, which can read the HTML

form definition from the standard input and is expected to produce a reply HTML document

on standard output displayed by the browser as a new document. The script in its turn may

launch a (prolog) program capable of communicating with the distributed CS-Prolog

application for composing the reply. The launched program is called the gateway program for

short. This scenario assumes a form-capable browser, i.e., one that can handle input from

HTML forms.

Another scenario of interactive work with web browser is to update the content of some

HTML page or pages directly from the application and have the browser refresh the display at

an appropriate rate when the page is shown (if the browser supports refreshing). This method

is suited for displaying alerts or monitoring system status.

The two approaches can be combined, and, of course, simple applications can use the

PiLLoW library directly also in the request-reply method, i.e., the gateway program can be

the application itself.

This specification cannot provide a comprehensive introduction to HTML, so a familiarity

with the topic is supposed on the part of the reader. The following sections are based on the

original PiLLoW documentation qouted above.

4.1 Organization

The general request-reply scenario requires several preparatory steps be performed by the

application developer. First the initial HTML page has to be written which is the starting

point for the user interaction (or a script dynamically composing the page). This initial page

should include one or more forms for user input. Each form can contain text fields, check

boxes, radio buttons and menus. The operator will formulate a question by setting these

controls to appropriate values. Every form can contain a Submit push-button. When the

user clicks this button (or hits the Enter key in some cases) the content of the form is sent

to a so called CGI executable associated with the button (CGI stands for Common Gateway

CS–Prolog II Graphical User Interface

8

Interface). This script can start other programs – in our case a CS-Prolog program, which will

receive the content of the HTML form; let’s call this application the gateway program. The

gateway program is probably specific to the application (there can be several of them); it is

the agent which understands both the HTML particulars and the notions the application

reveals to the operator.

The input control settings are analyzed by the gateway program, which connects through the

network to the target real-time CS-Prolog application. When the answer for the question

formulated by the user in the HTML form is negotiated, a new HTML document constituting

the answer is generated by the gateway program. Of course a new HTML form can be

included into this document too, where the user can continue the communication with the

application. It is also a good idea to place a link back to the initial document on the answer

page. When the formation of the answer HTML document is completed the gateway program

should terminate.

4.2 Writing form handlers with the PiLLoW library

The PiLLoW library provides the following predicates to simplify the task of getting the input

from a form:

get_form_input(Dic)

get_form_input(S_or_a, Dic)

Translate input from the form to a dictionary Dic (as a list of

attribute=value pairs). It translates empty values (which indicate only the

presence of an attribute) to '$empty', values with more than one line (from

text areas or files) to a list of lines as strings, the rest to atoms or numbers. Input

is read from the stream specified by the S_or_a argument.
get_form_input(Dic)

is equivalent with
current_input(Stream), get_form_input(Stream, Dic)

get_form_value(Dic,Var,Val)

Gets value Val for attribute Var in dictionary Dic. Does not fail: value is ''

(the empty atom) if Var is not found.

text_lines(Val,Lines)

Transforms a value given by a dictionary to a list of lines, for data coming from a

text area.

form_empty_value(V)

Useful to check that a value V from a text area is empty (can have spaces,

newlines and linefeeds).

form_default(Val,Default,NewVal)

Useful when a form is only partially filled. If the value of Val is empty then

NewVal=Default, else NewVal=Val.

Chapter 4: Web browser as CS-Prolog GUI component

9

4.3 Generating HTML document from Prolog terms

HTML documents can be easily composed in Prolog by directly writing the text and the

necessary markup properly arranged to any output stream. This method is, however,

somewhat inelegant and the HTML-specific marks render the source code hard to read.

PiLLoW offers the possibility to have an encoding of HTML code as Prolog terms, which

could be manipulated easily, and a predicate to translate such terms to HTML for output.

The basic predicate in PiLLoW to provide the functionality of translating Prolog terms to

HTML code is:

output_html(S_or_a, F)

It accepts in F a Prolog HTML term or a list of HTML terms and sends to the stream

specified by the S_or_a argument the text which is the rendering of the term(s) in HTML

format. The one-argument variant

output_html(F)

Is equivalent with

current_output(Stream), output_html(Stream, F)

output_html will occasionally fail if it encounters a structure which is not a legal HTML

term.

HTML is a quite powerful language. For using its full capabilities PiLLoW provides general

recursive structure manipulations. For simple cases, however, more intuitive special structures

are also provided.

In a HTML term certain structures and atoms represent special functionality (HTML

marking). An HTML term can be recursively a list of HTML terms. The following are legal

HTML terms:

hello

[hello, world]

[’This is an ’, em(’HTML’), ’ term’]

When converting HTML terms to character (HTML document) format, PiLLoW translates

these structutes recursively. Strings are always left unchanged. HTML terms must be fully

instantiated (ground) at the moment when the term is going to be translated. This allows

creating documents piecemeal, backpatching of references in documents, etc.

In the following sections we list the meaning of the principal Prolog structures that represent

special HTML functionality. Only special atoms are translated; the rest are assumed to be

normal text and will be passed into the HTML document unchanged.

4.3.1 General structures

Basically, HTML has two kinds of components: HTML elements and HTML environments.

An HTML element has the form

<NAME Attributes>

where NAME is the name of the element and Attributes is a (possible empty) sequence of

attributes, each of them being either an attribute name or attribute assignment ot the form

CS–Prolog II Graphical User Interface

10

attrname=”Value”.

An HTML environment has the form

<NAME Attributes> Text </NAME>

where NAME and Attributes are the same as above, Text represents data specific to the

particular marking (specified by NAME).

The general Prolog structures are used for representing these two HTML constructs are:

Name $ Atts

Represents an HTML element of name Name and its attributes Atts (‘$/2’ is

defined as an infix binary operator). For example, the term

img$[src=’images/map.gif’, alt=’A map’, ismap]

is translated into the HTML construct

Note that HTML is generally not case-sensitive, so we can use lower-case atoms.

name(Text)

(A term with functor name/1 and argument Text). Represents an HTML

environment of name name and included text Text. For example, the term

address(’clip@dia.fi.upm.es’)

is translated into the HTML construct

<address>clip@dia.fi.upm.es</address>

name(Atts,Text)

(This is a term with functor name/2 and arguments Atts and Text). Represents

an HTML environment of name name, attributes Atts, and included text Text.

For example, the term

a([href=’http://www.clip.dia.fi.upm.es/’],’Clip

home’)

is translated into the HTML construct

Clip home

env(Name,Atts,Text)

Equivalent with Name(Atts,Text).

begin(Tag)

begin(Tag,Atts)

These translate to the start of an HTML environment of name Tag and attributes

Atts (second form). Useful in conjunction with the next structure, when a piece

of separately prepared code is to be inserted into the document (for example,

Tag is pre). In other circumstances their usage is discouraged.

end(Tag)

Translates to the end of an HTML environment of name Tag.

Any HTML constructs can be represented with these structures (except comments and

declarations, which can be inserted as atoms or strings), but the PiLLoW library provides

additional, specific constructs to simplify HTML creation.

Chapter 4: Web browser as CS-Prolog GUI component

11

4.3.2 Specific structures

We list below the most important special structures for HTML that PiLLoW understands:

start

Used at the beginning of a document (translates to <html>).

end

Used at the end of a document (translates to </html>).

--

Produces a horizontal rule (translates to <hr>).

\\

Produces a line break (translates to
).

$

Produces a paragraph break (translates to <p>).

title(Title)

Used for defining the document title which is usually shown in the caption by the

browsers (translates to <title>”Title”</title>).

title(Title, Refresh_rate)

Used for defining the document title as in the case above, and also to specify a

time interval in seconds for the browser as the period for refreshing the displayed

page from its source document. Refreshing is useful when the underlying

document is dynamically changed by a running application for alerts or

monitoring (translates to <title>”Title” <meta http-equiv=”refresh”

content=”Refresh_rate”> </title>). The use of this form is not advisable for

‘reply’ type documents.

comment(Comment)

Inserts an HTML comment (translates to <!-- Comment -->).

declare(Decl)

Inserts an HTML declaration — seldom used (translates to <!Decl>).

image(Addr)

Used for inserting an image at address (URL) Addr (translates to an

element).

image(Addr,Atts)

As above, with the list of attributes Atts.

ref(Addr,Text)

Produces a hypertext link, Addr is the URL of the referenced resource, Text is

the text of the reference (translates to Text).

label(Label,Text)

Labels Text as a target destination with label Label (translates to

Text).

heading(N,Text)

Produces a heading of level N (1 <= N <= 6), Text is the text to be used as

heading (translates to a <hN> environment).

CS–Prolog II Graphical User Interface

12

itemize(Items)

Produces a list of bulleted items, Items is a list of corresponding HTML terms

(translates to a environment).

enumerate(Items)

Produces a list of numbered items, Items is a list of corresponding HTML terms

(translates to an environment).

description(Defs)

Produces a list of defined items, Items is a list of corresponding HTML terms

(translates to a environment).

nice_itemize(Img,Items)

Produces a list of bulleted items, Defs is a list whose elements are definitions,

each of them being a Prolog sequence (composed by ‘,’/2 operators). The last

element of the sequence is the definition, the others (if any) are defined terms

(translates to a <dl> environment).

preformatted(Text)

Used to include preformatted text. Text is a list of HTML terms, each element

of the list being a line of the resulting documents with layout characters preserved

(translates to a <pre> environment).

entity(Name)

Includes the entity of name Name (ISO-8859-1 special character).

verbatim(Text)

Used to insert text verbatim. Special HTML characters (<, >, &, ”) are translated

to their quoted equivalent.

nl

Used to insert a newline into the HTML document (just to improve human

readability).

cgi_reply

This is not HTML; the CGI protocol requires this content descriptor to be used

by CGI executables (including form handlers) when replying (translates to

<content-type: text/html>).

pr

Inserts into the page a graphical logo with the message

Developed using the PiLLoW Web programming library

which also points to the manual and library source.

The HTML terms used for creating input forms inside a document, are the following:

start_form(Addr,Atts)

Specifies the beginning of a form. Addr is the address (URL) of the program that

will handle the form, and Atts contains other attributes of the form (translates to

<form action=”Addr” Atts>).

start_form(Addr)

Specifies the beginning of a form. Addr is the address (URL) of the program that

will handle the form (translates to <form action=”Addr”> - method defaults to

post).

Chapter 4: Web browser as CS-Prolog GUI component

13

start_form

Specifies the beginning of a form without assigning address to the handler, so that

the form handler will be the cgi-bin executable producing the form (translates to

<form>).

end_form

Specifies the end of a form (translates to </form>).

checkbox(Name,State)

Specifies an input of type checkbox with name Name. State=on if the check-

box is initially checked, otherwise State=off (translates to an <input>

element).

radio(Name,Value,Selected)

Specifies an input of type radio with name Name (the radio buttons that are

interlocked must share their name), Value is the value returned by the button. If

Selected=Value the button is initially checked (translates to an <input>

element).

input(Type,Atts)

Specifies an input of type Type with a list of attributes Atts. Possible values of

Type are text, hidden, submit, reset (translates to an <input> element).

textinput(Name,Atts,Text)

Specifies an input text area of name Name. Text provides the default text to be

shown in the area, Atts a list of attributes (translates to a <textarea>

environment).

menu(Name,Atts,Items)

Specifies a menu of name Name, list of attributes Atts and list of options

Items. The elements of the list Items are marked with the prefix operator `$'

to indicate that they are selected (translates to a <select> environment).

There is also a special predicate html_expansion/2 predicate provided for defining new

structures. It is a dynamic partition of the pillow module (changed so for CSP–II), clauses

for translating additional user–defined specific structures can be appended to it using the

assertz built-in predicate. The head of html_expansion/2 is the following:

html_expansion(UserTerm, CanonicTerm)

where UserTerm is the additional term being defined and CanonicTerm is the definition using

already known HTML terms. Care must be taken in order not to create infinite recursion (for

example, by defining a new term with itself).

4.4 Using PiLLoW in CS-Prolog II

CS-Prolog II uses a slightly modified version of the PiLLoW library. At the interface level the

differences are in the addition of get_form_input/2 and output_html/2 predicates that allow

the user to specify any source and sink, respectively, in place of the standard streams, and the

extended variant of the title HTML term for specifying a refresh rate. Another difference

is the omission of the fetch_url/3 predicate. The last difference is that html_expansion/2 is

made dynamic, additional clauses can be appended to it using assertz.

For the description of other PiLLoW predicates not covered here see the original PiLLoW

manual at the place indicated earlier.

CS–Prolog II Graphical User Interface

14

The compiled library is placed in the home directory as pillow.mdf along with

standard.mdf and csptrace.mdf, but, unlike the latter ones, it has to be linked

explicitly with the other compiled modules (complete path specification is necessary) of the

application when the .pdf file is created. The name of the module is pillow.

There is also a header file named pillow.inc in the home directory that can be included

into the source module for specifying the imported PiLLoW predicates, or used as an example

for the necessary import directives. The following example shows how the full set of

exported predicates can be imported using the header file:

import(

#include <pillow.inc>

).

Besides, if the general structures are used, then ‘$’ has to be declared as an infix operator,

both compile time and runtime, as for example:

:-op(150, xfy, ’$’).

among the directives, and

op(150, xfy, ’$’).

somewhere in the initial phase.

4.5 Using the DCG converter

The original PiLLoW library source uses DCG syntax. CSP–II lacks this feature, so a

separate DCG converter program had been developed for adapting the library. The converter

is based on a DCG compiler written in Edinburgh by Fernando Pereira, EDCAAD, in 1984.

The converter can be used for converting any other CSP–II source containing DCG clauses.

In order to do this, first the source code has to be preprocessed (unless it is pure wrt. to the

preprocessor). The converter itself acts as a filter, reading input from the standard input and

writing the result to the standard output. Here is an example showing how the PiLLoW

library had been converted (after making other syntactical adjustments manually):

cspcomp -P pillow

csprolog -cspprog convdcg <pillow.i >dpillow.pro

cspcomp -fo pillow.mdf dpillow

The converter itself is made of two modules: dcg.pro and convdcg.pro; these sources

can be found in the examples subdirectory of the distribution. The runnable

convdcg.pdf is placed into the utilities subdirectory.

	1. Introduction
	2. Programming environment
	2.1 Projects
	2.2 Generating code
	2.3 Executing programs
	2.4 Options
	2.5 Starting the GUI environment

	3. Multi-window trace
	4. Web browser as CS-Prolog GUI component
	4.1 Organization
	4.2 Writing form handlers with the PiLLoW library
	4.3 Generating HTML document from Prolog terms
	4.3.1 General structures
	4.3.2 Specific structures

	4.4 Using PiLLoW in CS-Prolog II
	4.5 Using the DCG converter

