
Distributed Object Oriented Make Development System page 1

1. Distributed Object Oriented Make Development System

1.1 Introduction

The basic concept of data processing is that we have some kind of data then we
apply a program to it to generate other data for further processing or use. That is
quite simple, but if we are working with large amount of data it becomes hard to
know what data sets and programs we use to produce a particular result. Moreover
some of the data sets sooner or later will be replaced, in which case all of the data
we produced with the use of this data set becomes obsolete (or out-of-date).

So the problem is not to write a program which can generate one type of data
from other type of data, but a program that can decide how to generate a specified
data from the available data.

There are two ways to generate more complex applications: write a brand new
program or combine simpler programs to produce a complex processing system.
The former requires more effort to develop the application, but the result will be
more effective. The latter will be developed much faster, and the maintenance will
be much easier (Figure 1-1).

To develop simple and small programs and build more complicated applications
from them has many advantages such as easier development, re-usability and less
hardware requirements. However the interfaces between these applications must be
designed very well.

Simple
program1

Simple
program2

Simple
program3

Complex application

Simple
program3

Simple
program1 Simple

program2

Small task1

Small task2

Small task3

Figure 1-1 Two ways to develop application

Let us take a closer look at the software development process. First we apply
compilers to the source files, and many cases we apply further programs to the
generated object code (i.e. linkage editors etc.). In different applications we use
different compilers and we apply them in different orders.

The problem becomes more complicated if after the compilation some of the data
sets have been modified. In that case not all the source files must be compiled, but
the modified ones. And of course object files generated from the modified source

Distributed Object Oriented Make Development System page 2

files will be modified and the results or other object files generated from them must
be recompiled (re-linked).

The most straightforward algorithm to solve this problem is to recompile (or re-
link) all files right after they were modified. However it is a very cost ineffective
method as the following example shows. Assume that an application was built.
After that a set of the source files was modified. By the algorithm after the first
source file were modified the file will be compiled and the generated object file will
be linked, and this will happen to all the source and generated object files. Of course
in that case not all the linking were necessary but the last one since the result of the
previous ones were overwritten. Everyone can see that this algorithm produces a
computational overhead.

Another approach turns the previous algorithm upside-down. This means that we
not look at what files generated from a certain file, but wee look at what files
needed to generate a certain file. In that case after modifying a source file nothing
happens. The action is taken when a result is needed. First we should examine if it is
available and if it is generated from the appropriate latest source files. If not the
algorithm is applied recursively and the result is built.

A considerable effort has been made to solve this problem, particularly for
software development tasks. A utility called MAKE was developed to keep track of
dependencies between files. There are other solutions, but these programs are rather
platform dependant and not a standalone utility, but a part of an integrated
development environment (IDE).

In the following paragraphs we introduce some example problems we will use to
demonstrate the process of making data up-to-date. Our first example is the
standard MAKE software development process.

Example 1:

The example is maintenance of an image displayer/converter application. It
contains a resource definition file DRAW.RC, which includes a header file
DRAW.RCH. The project contains three C++ source files DRAWING.CPP,
MAIN.CPP and CONVERT.CPP. The source file CONVERT.CPP includes a header
file CONVERT.HPP and the source file DRAWING.CPP includes a header file
DRAWWING.HPP. The source file MAIN.CPP includes both CONVERT.HPP and
DRAWING.HPP and also includes a header file MAIN.HPP. A resource file
DRAW.RES is produced by the resource compiler from the file DRAW.RC. The
C++ source files are compiled by a C++ compiler, producing three object files
DRAWING.OBJ, CONVERT.OBJ and MAIN.OBJ. The object files and the resource
file then linked together by a linkage utility producing the executable file
DRAW.EXE. The structure of the project is represented on the Figure 1-2.

Distributed Object Oriented Make Development System page 3

DRAW.RCH

DRAWING.HPP

DRAWING.CPP

DRAWING.OBJ

MAIN.HPP

MAIN.CPP

MAIN.OBJ

CONVERT.HPP

CONVERT.CPP

CONVERT.OBJ

DRAW.RC

DRAW.RES

DRAW.EXE

Figure 1-2 Software development example

The Traditional Make Utility page 4

2. The Traditional Make Utility
One of the major achievements in the software development area is the MAKE

utility. Here we will discuss the abilities and weaknesses of this tool. To understand
how the MAKE works, here we discuss the concepts and terminology. The files
represent computer data. No other data types supported (i.e. the file is a smallest
unit the make can deal with). The files have one property, the last time they were
modified. Based on this information, and of course information provided by the user
in the makefile the MAKE utility can decide which files must be recompiled (and
how) to make the required file up-to-date.

2.1 Concepts

The primary goal of the developers of the MAKE utility was to aid software
development. To understand why they used that particular solution we describe here
the most widely used way to develop software products. The program is built from
different object files which are produced mostly by C or other compilers from
source code or code generated by sophisticated source-code generators. When a
source code changed all object or other source files should be recompiled which is
derived from this source file. However, in most of the cases, when a new feature or
bug fix is introduced to the program, more than one file should be changed. For this
reason it is a waste of computer resources to recompile the project when a file is
changed. The logic behind the MAKE utility is not “This file is changed. What,
should I remake?”, but rather “I want this, what should I remake to make it up-to-
date?”. This concept is like the top-down design method.

Each generated file is called a goal. A goal depends on its dependants. The goal
is called up-to-date if its dependants exist and are up-to-date, and the goal exists
and newer than any of its dependant. The source files (which are not generated, but
given) are always up-to-date.

In the Example 1 the main goal is the executable file DRAW.EXE. It depends on
the files DRAWING.OBJ, MAIN.OBJ, CONVERT.OBJ and DRAW.RES. The
executable file is generated by the shell command:
LINK MAIN.OBJ DRAWING.OBJ CONVERT.OBJ DRAW.RES

2.2 Files

A makefile is used to control the make process. The makefile contains
information about the project goals, the commands used to rebuild them and the
dependency relations between them.

The makefile consists of explicit and implicit rules, variable and option
definitions. For example if we want to compile the program HELLO which is
compiled by the command.
CC -O HELLO HELLO.C

we use a makefile which defines a goal HELLO and defines its dependants
HELLO.C and HELLO.H if HELLO.H is included from HELLO.C. Here we call the

The Traditional Make Utility page 5

command producing the program HELLO the make action. It is possible to use
other utility than compiler, for example the LEX or YACC which generate a C
source file from some specific files.

The term relation means a binary relation between two objects. In the traditional
make only the newer-than relation is available. The makefile contains the project
goal, its dependants and the make actions necessary to produce the goals. The
UNIX makefiles contain options, macro definitions, comments, explicit and implicit
rules. The first three provided for convenience and customisation, for us the implicit
and explicit rules are important. The structure of the explicit rule is the following
(Figure 2-1):
goal: dependant1 ... dependantn
 action1
 ...
 actionn

dependant 1 dependant 2 dependant n

goal
action 1
action2

:
action m

Figure 2-1 Goal and its dependants

This construct describes that the goal 'goal' depends on 'dependant1' ...
'dependantn' and to build the goal it is necessary to execute the shell commands
'action1' ... 'actionn'. The dependant list and the make actions are optional but
naturally it is senseless to omit both. There are utilities that can produce the
dependant list automatically based on the make actions. For example the
MAKEDEPEND utility is widely used to produce dependency information for
makefiles scanning the C source code for include files. Also C compilers have
options which can be used the produce such dependency lists. The typical example
of implicit rules is this:
.c.o:
 cc -c $<

This describes that files end with '.o' can be produced from files with the same
name except '.c' instead of '.o' by using the shell command
cc -c filename

when filename.o produced compiling filename.c.

The Traditional Make Utility page 6

CC = cl
LINK = link
RCOMP = rc
RM = del
BJS = drawing.obj main.obj convert.obj
CFLAGS = -c

implicit rule
.cpp.obj:
 $(CC) $(CFLAGS) $<

.res.rc:
 $(RCOMP) $<

explicit rule (draw.exe)
draw.exe: $(OBJS) draw.res
 $(LINK) $(OBJS)
 $(RCOMP) draw.res

non file goal
clean:
 $(RM) *.obj *.res

drawing.obj: drawing.cpp drawing.hpp
convert.obj: convert.cpp convert.hpp
main.obj: main.cpp main.hpp drawing.hpp convert.hpp
draw.res: draw.rc draw.rch

In the example makefile we can see almost all kind of makefile definitions. This
makefile include variable definitions, implicit and explicit rules. The variable
definitions are used to define command names of compilers, linkers and command
line options and the names of the object files. The implicit rules define the
compilation method of C++ source files and resource definition files. Implicit rules
can be applied to filename suffixes listed in the SUFFIXES make option. The
makefile contains explicit rules with and without specified make actions. Here we
can see, how explicit rules can be used with implicit rules to define actions by
implicit rules and dependencies by explicit rules. The generation of this kind of
explicit rules can be highly automatic. There is a goal 'clean' which not really refers
to a file. Since the defined make action does not generate the file named 'clean' (and
we can assume there is no such file in the current directory) the goal 'clean' is never
up-to-date and the command 'make clean' will always take that action.

Notice that the object files do not depend directly on the C++ header files. For
example MAIN.CPP depends on MAIN.HPP, CONVERT.HPP and DRAW.HPP can
be expressed in a quite difficult way in the makefile. It is easier to write things like
above instead of things like this:
main.cpp: main.hpp drawing.hpp convert.hpp
 touch main.cpp
main.obj: main.cpp

Since the MAKE utility was developed for compilation all the goals and
dependants are supposed to be files. However, it is possible to define goals which
are not files, for example the goal clean is usually defined to be a non-file goal. Of
course, because there is no file named clean created during the making the goal

The Traditional Make Utility page 7

clean, the goal clean will never be up-to-date unless there is a file named clean in
the actual directory. The clean goal is usually defined in the following way:
clean:
 rm -rf *.o core

That means all object files, and a core file should be removed to make the project
clean. In this case the goal clean is a non-file goal, and it has no dependants.

2.3 Make process

The make works in the following way:

1. the make is called with the name of the goal and other options

2. the make reads the makefile in the current directory unless other makefile
is specified with command-line options (in UNIX systems the file named
makefile of Makefile used in that order, if both exist a warning is printed).

3. if no goal is specified at the command line the first goal is used

4. if the specified goal does not exist in the makefile the make utility prints an
error saying that it does not now how to make the goal.

5. the make utility checks if the goal is up-to-date by checking whether the
file with same name as the goal and the dependants are existing, and the
goal is newer than its dependants. If all the files exist, and the goal is the
newest then no action is taken, and the goal is said to be up-to-date.

6. the make checks if the dependants are up-to-date and if not, it regenerates
them

7. the goal is made by the specified shell command(s)

The structure of the make file allows the users to define a wide range of
activities, not only to build programs, but build other things (for example
documentation), and take different actions (for example installing the software).

Because the makefile is a simple text file it is easy to write makefile generators,
and other make-related tools. Some of them:

 MAKEDEPEND: extract dependency information from source files, based
on the information contained in the makefile, and checking the source files
it creates a complete dependency information of the project goals.

 IMAKE: create a makefile from a machine independent imakefile, and
machine dependent make templates. The templates are installed at the
machines, and the imakefiles are provided with the software.

Distributed Make Utility page 8

3. Distributed Make Utility

This chapter describes the concepts of the Distributed Make, and the
requirements the Distributed Make should meet.

To illustrate the Distributed Make we will slightly modify our previous example.
In that example we introduced a program that converts and displays images. We
assume there are two types of image (BMP and PNM). The program should display
these images. The two image type processing functions will be implemented in two
computers. For example a BMP specific part can be implemented in an IBM PC and
a PNM specific part in a workstation. The rest of the program can be implemented
in any of the computers. Then the Distributed Make is used to build the project. Let
us assume that all the not image specific parts are implemented in the PC. In that
case we can see the structure of the project in the Figure 3-1. If we build a project
in the PC than we see that the files PNM.HPP and PNM.OBJ are remote
dependants, and a remote action may be necessary to compile the object file
PNM.OBJ.

DRAW.RCH

DRAWING.HPP

DRAWING.CPP

DRAWING.OBJ

MAIN.HPP

MAIN.CPP

MAIN.OBJ

BMP.HPP

BMP.CPP

BMP.OBJ

DRAW.RC

DRAW.RES

DRAW.EXE

PNM.HPP

PNM.CPP

PNM.OBJ

Figure 3-1 Software development example on multiplatform environment

Distributed Make Utility page 9

3.1 Network, distribution concept

Computers can be used more efficiently if they are connected to each other by a
computer network. The set of physically connected computers is not yet a network
environment, the computers must communicate with each other with some kind of
network protocols. The computers can communicate with different protocols. In
fact different size of computers mostly use different protocols to communicate.

The Distributed Make utility should know all the necessary protocols to be able
to communicate with each host, and carry out all the make action and remote
copies. Software development on distributed environment has a number of
advantages.

The major advantage is sharing code. This means, that a code developed on one
host can be used on another host, and the newer versions become available
immediately. Some softwares are running on several hosts. The software products
based on the client-server model contain several components running in different
type of hosts communicating with each other by a network. Obviously this type of
software must be developed on a networked environment.

A networked environment also useful when a multiplatform software is
developed. If we want to develop a software which is capable of running under
different operating systems, a network can connect the development sites to each
other to transfer the core code (which is machine independent). In the case of large
software project it is possible that some parts of the software were written on one
machine and other parts of the software are written on different machines. So the
source files or the object file should be transferred between the machines to build
the complete software. With distributed make it is possible to use the same makefile
on all the hosts and build it on any of the host. However, a makefile can define the
host where the actual compilations take place.

3.2 Problems with network distribution

One of the problems in the networked environments is the wide range of
available protocols. This is not a problem itself but implies a problem that different
computer communicating with each other with different protocols will never
understand each other. The best solution would be the use only one protocol (but
which?) that all the host can understand.

Other problem is the data representation. Different computers represent data in
different forms, and the conversion between these forms is not always easy.

Another problem can be the temporary unavailability of some hosts. This means
that some of the hosts on the network is unreachable due to some hardware
problem in the lines (this is mostly a problem for wide range networks). In that case
it is possible to suspend the execution of a (probably remote) command, take other
actions, and if the connection is established again the command can be resumed.

In wide area networks (WANs) the different time zones may introduce additional
problems. Even in the case of a local area network (LAN) unsynchronised system
clocks may cause problems.

Distributed Make Utility page 10

3.3 Data conversion on multiplatform network

In heterogeneous computer network a different file representations should be
converted to each other. For example the DOS and WINDOWS based systems
represent the end-of-line with a two character sequence (CR and LF) while in
UNIX systems only the LF character terminates the lines, in other computers (for
example the Apple Macintosh) the CR character is a line terminator. However, not
all the files should be converted (for example images must remain the same).

There are other data than files, for example the last modification time of a file,
represented in different forms on different platforms.

One of the major problems is the naming of files. Some operation systems use
very limited file names for traditional reasons.

One solution of these problems is to define object (time, filename, etc.) types and
in these objects to define default conversion functions to each two of supported
platforms. An other solution is to support a standard format, and provide
conversion functions to this format. In this case the conversion requires more
computational effort, but the number of conversion functions is much less, and the
set of conversion functions is easier to extend.

3.4 Make process

We introduce the following technical terms for Distributed Make:

 local host is the host where the Make utility is executed

 remote hosts are all the other hosts

 remote makefile is the makefile that resides on remote host

 remote goal is a goal residing on a remote host

 remote dependant is one of the dependants of a goal resides on a remote
host

 remote action is a make action that should be performed on the remote host.
For example a remote copy when one of the files are copied between
different machines is a remote action.

We intend to use the same makefile on all hosts. This means that each object can
be local or remote. In that case all objects described as remote objects (the
description of the object contains the host it resides on).

When the MAKE command is executed on a host, first the Make looks for the
makefile. If not specified in the command with the '-f' flag the make utility looks for
the file named 'makefile' and 'Makefile' (in this order, a warning message is issued
when both files exist) in the current directory. In the case of the Distributed Make
utility a remote makefile can be used.

After the utility found the makefile parses it. After that the Make looks for the
goal (which is the first goal in the makefile unless specified in the command line). If
the Make encounters a remote dependant it makes a local copy of it. In the local
command this local copy is used. If a goal is remote it is either made locally and
later copied into its host or made by a remote command in which case the Make

Distributed Make Utility page 11

must make sure that all dependants are copied into the remote host where the
remote command is executed.

While the host is temporary unavailable the normal behaviour of the make is to
issue a warning message, and continue the make process with other independent
actions, or issue an error message and stop. A command line switch determines
what the Make will do in this case.

Example 2:In this example we look at the work of a network manager. He or she
maintains host, information services and databases in the network. In this example
we can illustrate remote and shared objects and actions. One activity of the
administrator is to make a backup from a specific host to a specific device. In this
case the host where the backup made from and the backup device are the most
important objects. Both of these objects can be remote or local. It is possible that
both of these objects can be remote in the same time. The backup process can be a
remote action. Also some special relation can be introduced, for example a relation
can be if a cartridge mounted in the tape device used as backup device. Mounting a
tape device itself can be a make action. The backup may depend on that action. The
backup may also depend on the relation between the 'free space' attribute of the
mounted backup device and the 'allocated space' attribute of the disks the backup
made from.

The maintenance of a database or network information system can be described
with activities. Such as the database update may be a make action. Let us assume
that new data files arrived. The new files are represented by objects the database
depends on. When the make is executed the make actions take place that
incorporate the new data to the database. The database and the data files can be
remote or shared objects.

Object Oriented Make page 12

4. Object Oriented Make

The key idea of the whole development is the object-oriented design. In the
traditional MAKE utility every goal and dependent is file, so the Object Oriented
Make everything is represented as object. The make activities are described as
objects. A set of predefined object types (classes) can be used to define activities.
This object definitions may take parameters (mostly other objects, but other
parameter types are also possible) to describe the unique attributes of the activity.
The activities has dependants (objects which the activity depends on), and the
program checks if an object is completed (up-to-date) before trying to make it. The
general improvement in this concept is to use objects as project goals, rather than
files (as in the standard Make).

We can say that in the traditional MAKE all objets are files, but it is not true in
some viewpoint. Lets say that all the files are objects. The objects has properties
such as their last modification time and command how they can be created. We can
divide the objects in different classes, such as C source files, object files, etc. Let us
allow different object types than files for example variables, options or actions.
Then we can express make actions as objects.

Here we can ask how these objects relate to each other, and we can define
relations between objects. With relations we can express dependencies. So we can
express make actions as object properties (a make action can be itself an object) and
dependencies as relation between object. Than we start to extend the object types
(classes) and relations, and we achieve a utility that is a generalisation of the
standard MAKE utility. The result will be rather different than the MAKE, but it
works with the same concepts, and can handle not only files but any (implemented)
type of objects.

The applications of the Object Oriented Make will depend on the implemented
Make classes. So the extensibility of the Object Oriented Make is very important.

4.1 General introduction to the object oriented concepts

In this chapter we introduce the basic concepts of object oriented programming,
such as encapsulation and inheritance.

While in the traditional function oriented programming concept data and
functions that process the data are handled separately, in the object oriented concept
they are encapsulated into one structure called object. The techniques used in object
oriented programming are also different because of the specific properties of the
objects. An application may contain different kind of objects. The same type of
objects are called object classes, a specific object is called an instance of its object
class.

The most used technique to create new object classes is inheritance. Inheritance
means that we use previously defined object class or classes to define a new class.
The concept is that the most general object classes are created first, then a more
specific object classes are created by inheritance from the general ones.

The new classes are inherited from their ancestors, by adding new data and
function fields or redefining existing function fields. The classes have specific
function fields called constructors and destructor. An object class may have more
than one constructor, but only one destructor. A constructor is used to construct a

Object Oriented Make page 13

new object instance and initialise its data fields. The destructor is used to destroy an
existing object instance by deallocating the dynamically allocated data, or perform
other actions before the deallocation of the object's data.

The access to the data fields of the classes can be restricted. Three kind of access
level available in C++ the private, the public and the protected. The private data
and function fields are available from the functions of the class. The public fields are
available from any place in the program, while the protected fields are available
from the class and its successors. One may specify access levels in inheritance to
restrict the successor's access to it's ancestor's fields. The access rights may be
overwritten by defining friends.

In some cases an inherited functions should call one of the actual object's
function. To do this a use of virtual function is necessary. If in the ancestor a
function is defined as virtual, and the same function is defined in the successor, that
means the last fuction overwrite all of the previous definitions.

It is possible you do not need to implement (only declare and use) virtual
functions in an object class. Such a class is called an abstract class, since it is not
functional (the virtual functions are unimplemented). These kind of classes can be
used as ancestors of other objects, which can be a normal (non-abstract) class by
defining all the missing virtual functions. To express that a class is abstract we
assign a zero (0) value to the unimplemented virtual function.
class CAbstractClass
{
public:
 ...
 virtual int Function(void) = 0;
 ...
};

4.2 Object Oriented Make classes

The Object Oriented Make has some basic make classes. A part of these classes
are abstract classes. That means they are never used in makefiles but serve as an
ancestor of definable make classes. The abstract classes make the creation of new
make and property classes easier.

The main abstract class is the CCore class. The CCore class has an important
virtual function, the IsKindOf function. This function returns a pointer to the object
instance if its parameter is the string "CCore", otherwise it returns NULL. If this
function is implemented correctly in the derived objects, then each object can return
its components (parts type of its ancestors). This function recursively calls the same
functions of the ancestors which can return a pointer to the part of the object given
by the parameter.
class CCore
{
public:
 ...
 virtual void * IsKindOf(
 const char * pClassName);
 ...
};

Object Oriented Make page 14

void * CCore::IsKindOf(
 const char * pClassName)
{
 if (!strcmp(pClassName, "CCore"))
 return (CCore *) this;
 return NULL;
}

CCore

DECLARE()
IMPLEMENT()

IsKindOf

The implementation of the IsKindOf function is quite straightforward and some
macros also provided to make it easier. However these macros are difficult to use in
some cases due to the possible large number of parameters. The make and property
class implementors must know how to create the IsKindOf function of the new class
since it is important for the makefile parser. First the object should save its class
name. The class name can be saved into a static variable since all object instances of
the same class have the same class name. This class name can be set in the
construction or can be hardwired into the class code. Then the IsKindOf function
must be implemented. This function must check if its parameter is the same string as
the object's class name and return a pointer to the object (the this pointer) if it is.
Otherwise it should call the IsKindOf functions of the ancestors of the object class.
class CExample : public CCore
{
public:
 static const char * classCExample;
 virtual void * IsKindOf(const char * pClassName);
 ...
};

void * CExample::IsKindOf(const char * pClassName)
{
 if (!strcmp(pClassName, classCExample))
 return (CExample *) this;
 return CCore::IsKindOf(pClassName);
}

When the class has only one ancestor this can be done by the macros DECLARE
and IMPLEMENT. However in most of the cases the object has more than one
ancestor, since properties are defined by inheritance, other macros can be used
(IMPLEMENT2, IMPLEMENT3). To learn more about the usage of these macros
see the example.

Helper macros:

Object Oriented Make page 15

 DECLARE(<class name>);
 IMPLEMENT(<class name>, <base class name>);
 IMPLEMENT2(<class name>, <base class name1>,
 <base class name2>
 CLASS(<class name>)

Derived class declaration:
class CExample : public CCore
{
 DECLARE(CExample);
public:
};
IMPLEMENT(CExample, CCore);

Using derived class and IsKindOf virtual function:
CExample Example;
CCore * pCoreClass = &Example;
void * ret = pCoreClass->IsKindOf(CLASS(CExample));
 Result: ret = pointer to Example
void * ret = pCoreClass->IsKindOf(CLASS(CCore));
 Result: ret = pointer to CCore part of Example

4.3 Object Oriented Makefile

The Object Oriented Make uses Object Oriented Makefile, i.e. the makefile
contains object declarations and dependency information. The make actions are
determined by the object types. In the makefile we can use instances of predefined
classes. The class definitions are 'wired' into the Make program, and can be
extended by extending the Object Oriented Make itself. Of course, we can set
attributes in the object declarations as well.

4.4 Makefile parser and Make Objects

In our concept the role of the Make utility is to parse the makefile and create the
objects defined in it. Everything else is done by the objects. However, it seems to be
necessary to provide information on the host (where the make is running) and the
software environment (i.e. operating system, environment variables, available
programs, utilities, etc.). This can be done with the use of a core make class, in
which case this information is provided by the functions implemented in the core
make class. All the Make Objects are the dependants of this class.

The Make Object definitions consist of the object type, the object name (the
name of this object instance) and the object parameters which give the actual values
of the member variables of the object type. The parameters may include the host (to
define remote objects) or this parameter can be specified in the object name.

Every Make Objects are derived from CCore. Using the IsKindOf virtual
function has the following advantage:

We should see what can be done in compilation time and what should be done in
runtime. At the parse of the makefile a certain property of an object is needed. We
can not use type-casting because the property class is available at runtime. Instead
we use the IsKindOf virtual function.

Object Oriented Make page 16

The dependence relations are defined in a traditional makefile-like way. First the
goal is specified, then a colon then the dependants. The dependants can be not only
objects, but properties of the objects (for example myfile.modtime). If no property
specified the default (the last-modification-time for file objects and other reasonable
properties for other objects) property is used.

4.5 Special object types for Object Oriented Make

In the Object Oriented Make implementation we want to use two kind of object
types, the Property classes and the Make Object classes. The Property classes define
properties of the Make Object classes. If an object type has a certain property the
given Property is inherited by the Make Object class.

4.5.1 Property Object Type

The Property Object type (class) represents a certain property. Relations are
defined with the help of properties. All Property classes are derived from a core
CProperty property class.

As you will see later the properties define relations and these relation functions
are needed for the makefile and the objects and the relation (property) names are
available only at runtime, it is necessary to retrieve a property ancestor of the given
object. Fortunately that can be done by the IsKindOf function. The IsKindOf
function must be implemented the same way as described at the introduction of the
CCore class. Unfortunately the relation functions in the property objects can not be
declared as normal or virtual functions due to the inheritance used in the definition
of make classes, so relations must be declared (and implemented) as static.

This makes necessary to implement a virtual function named IsKindOfProp in the
base property class (CProperty). The CProperty class is an abstract class, and it is
used as the ancestor of all property classes. The IsKindOfProp virtual function is
like the IsKindOf function except it has a second parameter, which used to return
the relation function defined by the property. This is needed, because relations
should be declared as static functions. The IsKindOfProp function must be declared
and defined the same way as the IsKindOf function except is must return a relation
function in its second parameter.

Macros are also provided for declaration and implementation of this function,
which have the same limits as in the case of IsKindOf function, however they are
more useful since property classes are mostly inherited from another property class.
There are macros called DECLARE_PROP and IMPLEMENT_PROP, that makes
easier the declaration and implementation of these functions. See the examples to
learn more about the usage of these macros.

The CProperty class has another unimplemented virtual function, the Getxxx
function, where the xxx is the name of property value. This function simply returns
the value of the property.

Object Oriented Make page 17

//
// CProperty
class CProperty : public CCore
{
 DECLARE_PROP(CProperty);
public:
 // example: value of property
 virtual CValue GetValue(...) = 0;
 ...
 virtual CProperty * IsKindOfProp(
 const char * pPropertyName,
 RELATION_FUNCT* * pRelation = NULL
);
 ...
};
IMPLEMENT_PROP(CProperty, Ccore);

CProperty

DECLARE_PROP()
IMPLEMENT_PROP()

IsKindfOProp
Getxxx

4.5.2 Make Object Type

The Make Object types (classes) are derived from the core CMakeObject (and
CCore) make object type. These classes can be used to define objects in the
makefile. All make actions are performed by these objects. The core Make Object
has three basic functions. The first is the completed function (IsCompleted) which
determines that the object is up-to-date or not. The second is the MakeMe function
which takes the necessary actions to make the object up-to-date. The return values
of these functions are either yes or no. The yes means that ‘yes - the object is up-to-
date’ or ‘yes - it is successfully made up-to-date’, the no means that the object is
out-of-date or the remake of the object was unsuccessful due to some errors. There
is a third reasonable answer for the first function which says that the answer is not
available, i.e. during the computation of the answer an error occurred. The
Construct function allows to dynamically construct Make Objects.
///
// CMakeObject
class CMakeObject : public CPropCompleted
{
 DECLARE(CMakeObject);
protected:

 CMakeObject(void);

 CMakeObject(const char * Name, int Type);

public:

Object Oriented Make page 18

 virtual ~CMakeObject();

 enum EState {
 STATE_INITIAL,
 STATE_NOTCOMPLETE,
 STATE_BLOCKED,
 STATE_READY,
 STATE_MAKING,
 STATE_COMPLETE,
 STATE_ERROR
 };

// Make Object operators

 virtual int Communicate(HCOMM hComm, const char *
Command);

 virtual int ServerGetValue(HCOMM hComm, const char
* Property, const char * Command) = 0;

// abstract Make Object operators

 virtual BOOL IsCompleted(void);

 virtual const char * GetDefProp(void) = 0;

 virtual BOOL IsExist(void) = 0;

 virtual BOOL CleanUp(void);

const char * GetName(void) const;

 virtual char * GetFullName();

 static CMakeObject * NameToObject(
 const char * ObjectName);
 CProject * GetProject(void);
 CProject * GetTopLevelProject(void);

 CDependList * m_Dependants;
 virtual BOOL BeginMake(
 BOOL Error);

 virtual BOOL EndMake(
 BOOL Error);

 virtual const CHostObject * GetHost(void);

 virtual COutput * GetOutput(void);

Object Oriented Make page 19

 void SetName(
 const char * Name);

 virtual Estate Request(CMakeObject *obj);

 virtual int Notify(int succes, CMakeObject *obj);

 virtual int Transfer(HCOMM hComm = NULL);

 virtual int NotifyClients(int Success = -1);

 void SetState(EState State);

 CMakeObject::EState GetState(void);

protected:

 int IsPropCompleted(DepListItem& Dependant
);

 int IsPropCompleted(const char *
pPropertyName, CProperty& OtherProp);

 virtual BOOL Init(void);

 virtual BOOL OnChangedDeps(CDependList& Dependants
);

 int Execute(
 const char * Title,
 const char * CmdLine);

 static const CORE_ENTRY * serverGetValue(
 HCOMM hComm,
 const char * Property,
 const CORE_ENTRY * Entry);

 char * m_Name;

 char * m_ParamsString;

 CObList_ m_Clients;

 CObList_ m_Depends;

 CHostObject * m_pHost;

 CProject * m_pProject;

Object Oriented Make page 20

 CParamList * m_pParams;

private:

 EState m_State;

#ifdef UNIX
 pid_t pid;
#endif

// overridable Make Object operators

 virtual BOOL MakeMe(void);

friend MakeDlg;

friend CProject;

friend CServerProject;

friend CProperty;

friend CHostObject;

};

The member functions and variables will be explained below.

4.5.2.1 The Communicate function
This function is called upon communication requests. Override this function to

define protocol extension to the make protocol.

4.5.2.2 The ServerGetValue function
Convenience function to return certain data to remote parts of the object.

4.5.2.3 The IsCompleted function
Returns TRUE if the object is up-to-date. It uses the m_Depandants list and the

IsPropCompleted and IsExists functions to determine if the object is up-to-date.

4.5.2.4 The GetDefProp function
Returns the name of the default property (see properties). This may be different

for each type of objects. For most of the classes this is the ModifyTime property
(for traditional applications).

4.5.2.5 The IsExist function
Returns TRUE if the object’s data exist.

Object Oriented Make page 21

4.5.2.6 The CleanUp function
Performs cleanup after make actions.

4.5.2.7 The GetName function
Returns the object name. Each object must have a unique name within the same

project. See also the SetName, GetFullName functions and the m_pName field.

4.5.2.8 The GetFullName function
Returns the full object name of the current object, that is the full name of the

parent project appended a ‘#’ (hash mark) and the object name to it.

4.5.2.9 The NameToObject function
Returns an object with the given name if exists, otherwise returns a NULL

pointer. This function searches the entire hierarchy. See also the GetName,
GetFullName and GetTopLevelProject functions.

4.5.2.10 The GetProject function
Returns the project of the object. Objects are organised into a directed tree. The

root of the tree is the top-level project, the branches of the tree are the projects and
the leafs are the simple objects. This function returns the parent node of the object.
See the m_pProject field, and the GetTopLevelProject function..

4.5.2.11 The GetTopLevelProject function
Returns the toplevel project. It is useful if a search should be performed in the

entire object hierarhy.

4.5.2.12 The M_Dependants list
The dependants of the object. For remote objects the list is empty.

4.5.2.13 The BeginMake function
This function is called before the make action enabling the obejcts to perform

initialization tasks.

4.5.2.14 The EndMake function
This function is called after the make actions.

4.5.2.15 The GetHost function
Returns the host assigned to the object. For local object a NULL pointer is

returned. See also the m_pHost field.

4.5.2.16 The GetOutput function
Returns the object where the output from the make actions and other results

should be redirected.

4.5.2.17 The SetName function
Sets the objectname during initialization. The object name should not change

during the make process.

Object Oriented Make page 22

4.5.2.18 The Request function
This function is used to insert the object to another objects m_Clients list. The

function may return an immediate answer (either ready or error) in which case the
object is not inserted to the other objects m_Clients list, and won’t be notified later
about the change of the state of the other object. This function requests the state of
the object given as the parameter, and if the object is not ready it requests the object
to be made. The return value may indicate three results:

 the object is up-to-date (complete)
 an error occurred during the creation of the object (error)
 the object acknowledged the request and will send a notification when ready
See also the Notify, NotifyClienat functions and the m_Clients list.

4.5.2.19 The Notify function
This functin is used to notify clients about the change of the state of the object. If

the object reaches a terminal state (COMPLETE or ERROR) it notifies all the other
objects that are waiting for it. The notification specifies only that the object is
complete or an error occured. See also the NotifyClients function and the m_Clients
list.

4.5.2.20 The Transfer function
This function is used to transfer the actual data of an object. This function is

rather object specific. In the CMakeObject it is not implemented. It must be
overwritten in the inherited classes. An example implementation of this function is
available in the CFileObject class.

4.5.2.21 The NotifyClients function
This function calls the Notify function for each object in the m_Clients list. For

more information see the Notify function and the m_Clients field.

4.5.2.22 The SetState function
An object must always have a state. States play a very important role in

Distributed make. The state of an object may change only in certain ways. For more
information about states see the Objact states section. See also the m_State field.

4.5.2.23 The IsPropCompleted functions
These functions are used to determine if the object is up-to-date.

4.5.2.24 The Init function
This function is used to initialise the object. It is called from the constructor, and

before the object is unloaded from the memory.

4.5.2.25 The OnChangedDeps function
This function will be called when the dependants are changing.

4.5.2.26 The Execute function
This function executes a shell command. This is the preferred way of executing a

shell command rather than using the low level functions such as fork and exec. The
command is executed in a separate process. The current process will be blocked

Object Oriented Make page 23

until the shell command is completed, but incoming connection will be accepted and
served. In a UNIX box the process ID of the child process will be stored in the pid
field, and if possible the user ID and the group ID will be set to appropriate values.
See the features for more information.

4.5.2.27 The ServerGetValue function
Returns a property value for a communication link. This function makes easier

the access of object properties.

4.5.2.28 The m_Name field
The name of the object. Each object within a project must have a unique name.

Names are assigned to objects at the time of the creation and never changed during
the make process. Names are used to identify objects in the makefile and in the
make communication. This field is set by the SetName function and can be queried
by the GetName function. The naming of make objects is described in more detail
later. See also the GetFullName, GetName and SetName functions.

4.5.2.29 The m_ParamString field
The parameters of the make action are stored in this field.

4.5.2.30 The m_Clients field
The clients of an object are the set of objects which requested the object. The

members of this list should be completed to accomplish the goal of the make
process, but can be performed only when this object is available. Upon completition
of the object these objects will be notified. The CHostObject instances in this list
have a special role. A ChostObject instance in the list indicates that the remote part
of this object acknowledged a request. This list must be NULL for remote objects.
See also the Notify and NotifyClients functions.

4.5.2.31 The m_Depends field
The dependants of the object are stored in this list. The objects in the list are

checked to decide if the object is up-to-date. The relations between the objects are
represented with these lists.

4.5.2.32 The m_pHost field
In the Distributed Make each object has a host assigned to it. This is considered

to be the actual place of the object. For remote objects this pointer points to a
CHostObject instance, for local objects this is a NULL pointer (it does NOT point
to the local host). This field can be accessed with the GetHost function.

4.5.2.33 The m_pProject field
Each object is a member of a project (except the top-level proect). The projects

and objects are organised into an ordered tree. The projects are the branches of the
tree, while the objects are the leafs of the tree. The root of the tree is the top-level
project. The parent of the make object (the object one level up in the hierarchy) is
stored in this field. In the case of the top-level project (which has no parent) this
field points to the top-level project itself (it is NOT NULL!). This field should be
accessed through the GetProject function.

Object Oriented Make page 24

4.5.2.34 The m_pParams filed
This field contains the parameters for the make object. These parameters are

used during the make object creation.

4.5.2.35 The m_State field
This field stores the state of the object. The state of the objects has an important

role in distributed make. The scheduling of make actions is mostly controlled by
object states. For more information on object states see the MakeMe function, the
SetState function and the state section.

4.5.2.36 The pid field
This field exists only on UNIX boxes. If a make action takes place, the process

ID of the child process is stored here. This enables the make object to abort a
running make action. See the Execute function.

4.5.2.37 The MakeMe function
The MakeMe function implements the probably most important feature of each

object. The MakeMe member function of the CMakeObject class has a special role
in the make actions, since the logic that controls the make actions is implemented
here. These actions are desctibed in the States section.

4.5.3 Error Handling

There can be errors in both of the makefiles and objects. For example a C source
code may contain errors. The object should distinguish different type of errors and
perform necessary actions. The result of the make action can be one of the
following cases:

 First the make action can be successful. This does not requires special
treatment, a success return code must be returned to the make utility.

 In the second case a fatal error occurred. This means that the required make
action can't be performed or it reported an error. In this case a fatal error
must reported and the make process must be aborted.

 The third case is a non fatal error. For example one part of the network is
unreachable and a required remote file or action is not available. In this case
the a non-fatal error code is returned and it depends on the make options if
the make process should be aborted or not. In the third case the make may
decide to perform other necessary make actions if possible and try this action
later. In the third case a warning message is issued. This gives the user an
opportunity to take actions in order to correct the error.

4.5.4 Non-file Make Object Type

We saw that in the traditional make all goals and dependants are files, even if
these files never exists (for example in the case of the goal clean). In the Object
Oriented Make it is possible to create non-file object. The values of the non-file
Make Objects are defined in the time of object definition by explicit parameters or
defaults. The values and properties of the non-file object can be saved to and
restored from the Make status-file. In this way it is possible to determine if a non-

Object Oriented Make page 25

file object has changed. The values and the properties of the file type object can also
be saved and restored. The Make handles the file and non-file type objects in the
same way. The important advantage of the Distributed Make is that since the non-
file objects can save or restore their ‘up-to-date status’, while in the traditional
Make non-existent files (non-file objects) are never up-to-date (even if they have no
dependants).

4.6 Object Instances

4.6.1 Property Object

Property object instances are never used. Property objects are used to inherit the
make classes. Property objects are not defined for standalone use but as parts of
make objects, because of property class is an abstract class.

4.6.2 Make Object

Make Objects are derived from other Make Objects and Property Objects. The
concept is that simple and less specific classes can be extend with properties to
define more specific make classes.
CFileObject Object1(“src1.c“);
CMakeObject Object2;

4.7 Relations

Relations are defined between property classes. Traditionally the only used
relation is the newer-than relation. Here we extend the set of relations to define new
type of dependencies and conditions. Each property can support one unary and one
binary relation. If more relations are needed the property object must be inherited
and the new relation can be defined between the new property classes. To determine
if an object has a certain property, or to determine if two object can be compared
with subject to a certain relation the inheritances of the object are examined, i.e. the
object must have a certain ancestor.

The Relation function returns TRUE if the value of first property is ‘up-to-date’
compared to second property value, otherwise it returns FALSE.
 BOOL Relation1(
 CPropCompleted& Left,
 CPropCompleted& Right);
 BOOL Relation2(
 CPropTime& Left,
 CPropTime& Right);

4.8 Properties and Make Objects

The object attributes can be defined as member functions in the object, so why
do we need these Property classes? Assume that many objects have the same
property. If we define properties as member functions, we must define the Property
in all of the object types.

Object Oriented Make page 26

Instead we define Make Objects by inheritance. If an object class has a certain
property then the class is derived from that property (and possibly from another
make class and other properties too). In the case of Make Object both the IsKindOf
and IsKindOfProp functions must be declared and implemented. The declaration of
these functions is the same as in the case of properties. However implementation of
the IsKindOfProp is different. Since the actual class is not a property class
(however it is derived from the CProperty too) the IsKindOfProp function
implemented in a different way than in the case of property objects (which are
derived from only another property objects). In this case the IsKindOfProp function
must be implemented that it should call the IsKindOfProp functions of all the
ancestors. The IsKindOfProp function of non-property object types must be called
too since the object has all the properties that its ancestors have. The IsKindOf
function must be implemented in the same way as described at the introduction of
the CCore object.

The macros DECLARE_OBJ and IMPLEMENT_OBJ are provided to make the
declaration and implementation of these functions easier. See the examples for more
information on usage of these macros.
///
// CMakeObject
class CMakeObject : public CPropCompleted
{
 DECLARE(CMakeObject);
public:
 virtual CProperty * IsKindOfProp(
 const char * pClassName,
 RELATION_FUNCT* * pRelation = NULL) =0;
 ...
};
IMPLEMENT(CMakeObject, CPropCompleted);

4.8.1 Property inheritance rules

Here we describe some rules of Property inheritance. If a Property inherited
twice the function contained by the property must be overwritten. Otherwise
reference to these functions will be ambiguous, since it is not defined in the C++
specification which instances of these functions used.

To solve this problem the successors 'hide' some of the virtual functions of they
ancestors by redefining them as private. The example shows how the successor
hides the ancestors virtual function. The successor is the CPropModifyTime class,
the ancestor is the CPropTime class and the 'hidden' virtual function is the GetTime
function.

Object Oriented Make page 27

CProperty

CPropTime

CPropModify
Time

//
// CPropTime
class CPropTime : public CProperty
{
 DECLARE_PROP(CPropTime);
public:
 virtual CGMTime GetTime(void) = 0;
};
IMPLEMENT_PROP(CPropTime, CProperty);

//
// CPropModifyTime
class CPropModifyTime : public CPropTime
{
 DECLARE_PROP(CPropModifyTime);
public:
 virtual CGMTime GetModifyTime(void) = 0;
private:
 virtual CGMTime GetTime(void) = 0;
};
IMPLEMENT_PROP(CPropModifyTime, CPropTime);

4.8.2 Make Object inheritance

Make Object types are derived from the core Make Object Type. More specific
make classes derived from less specific classes. For example a C-source-file object
type (CCSourceFile) derived from a more general source-file object type
(CSourceFile).

Object Oriented Make page 28

///
// CFileObject
class CFileObject : public CMakeObject, public
CPropModifyTime
{
 DECLARE_OBJ(CFileObject);
public:
 // overwrite all property functions of base properties
 (Getxxx)
 virtual CGMTime GetTime(void);
 virtual CGMTime GetModifyTime(void);

 // overwrite CMakeObject functions
 virtual void * Construct(
 const char * ParamLine);
 virtual BOOL MakeMe(void);
 virtual const char * GetDefaultProp(void);
 ...

protected:
 CFilePath m_FilePath;
 ...
};
IMPLEMENT_OBJ2(CFileObject, CMakeObject, CPropModifyTime);

4.8.3 Default Property Type

Each Make Object has a default property which is used if none of its properties
defined in the makefile. This property are default property. For file-type objects it is
the last-modification-time property.

The default property defined by GetDefaultProp member function of
CMakeObject:
///
// CMakeObject
class CMakeObject : public CPropCompleted
{
 DECLARE_OBJ(CMakeObject);
public:
 ...
 virtual const char * GetDefaultProp(void);
 ...
};
IMPLEMENT_OBJ(CMakeObject, CPropCompleted);

4.9 Properties and Relations

As described above the connection between relations and properties are very
strong. The set of relation can be extended by extending the set of properties. So
relations are defined as property class member functions. A relation can be defined
as unary relation or binary relation between identical property types.

Since the relations are implemented as static functions, so the this pointer is not
available in these functions, the unary relations have one parameter while the binary
relations have two parameters. This is because the Relation functions have the fixed

Object Oriented Make page 29

type and so can be automatically declared (but not implemented) by the
DECLARE_PROP macro.
//
// CPropCompleted
class CPropCompleted : public CProperty
{
 DECLARE_PROP(CPropCompleted);
public:
 virtual BOOL IsCompleted(void) = 0;

 // autimatic declaration in DECLARE_PROP macro
 static BOOL Relation(
 CProperty * Left,
 CProperty * Right);
};
IMPLEMENT_PROP(CPropCompleted, CProperty);

BOOL CPropCompleted::Relation(
 CProperty * Left,
 CProperty * Right)
{
 return ((CPropCompleted *) Left)->IsCompleted();
}

///
// CPropTime
class CPropTime : public CProperty
{
 DECLARE_PROP(CPropTime);
public:
 virtual CGMTime GetTime(void) = 0;
 ...

};
IMPLEMENT_PROP(CPropTime, CProperty);

BOOL CPropTime::Relation(
 CProperty * Left,
 CProperty * Right)
{
 return ((CPropTime *) Left)->GetTime() >=
 ((CPropTime *) Right)->GetTime();
}

The Object Oriented Makefile page 30

5. The Object Oriented Makefile
The Object Oriented Makefile consists of object declaration and dependency

relations. Object declarations contain the object type the object name and optional
parameters. The object type must be defined in the Make utility. The object name is
a unique identifier, which used later to reference the object specified by the
parameters. When a non existent object is referenced the make utility tries to apply
the automatic object declaration. This means that based on the information in the
object name the make utility creates an object declaration. For example the type of
an object called MYPROG.C defaults to a C-source-file (CCSourceFile) object
type, the parameters defaults to MYPROG.C (the name of the file). Based on the
default information it is possible to declare the object. Of course, exact declaration
of the objects are preferred.

The dependency relations are represented in a traditional like form. Each
dependency consists of a goal (or activity) and a set of properties of object
instances.

5.1 Concepts

We treat all options, variables. goals, and dependants as objects. The performed
make actions depend on the type of the goal object. The role of the Make utility is
to parse the makefile and call the functions of the goal objects. The make also
provides information to the objects using default objects such as current hardware
or environment. The objects do not necessarily represent files. It is necessary to
maintain another file to track the object states of non-file or file objects. For
example we should save the compiler options used to produce a goal to decide next
time if the options are changed. The object properties are represented also as
objects. We bind relations to object properties so relations are object oriented too.
Both object types and relations (as property object types) are extensible with the
definition of new make classes. The taken action is not explicitly defined in the
makefile, but basically coded into the make classes.

We mostly use the same concept that we defined in the sections Traditional
Make Utility and Distributed Make with some exception. The main difference is that
this utility is capable of handle other object types than files, so we replaced some file
related terms with not file-related terms. For example if nothing has to be done to
achieve a certain goal (it is called up-to-date in the traditional make) we call it
completed. This expresses that a goal other than a (creation of a) file, for example a
test is completed (it does not make too much sense to say a 'test is up-to-date').

Make actions are implicitly defined by object types and they have hidden
implementation.

Example:

The Object Oriented Makefile page 31

...
CExeFile myprog("myprog");
CAction test("test_my_program");
CInstall install("/usr/local/bin", myprog);
...
myprog: myobj1, myobj2
test: myprog
install: test
...

In this case the goal myprog depends on the objects myobj1 and myobj2
(possibly object files), which are not discussed here. The goal (activity) test depends
on myprog, since the program should be made before tested, and the activity install
depends on the test. If the test is not successful the program will not be installed (so
the last working version will be in the directory /usr/local/bin). You may observe
that no make actions specified on the example. This is general since make actions
are implicitly defined by object types, and custom make action can be specified as
CAction make objects. The make utility will keep track of the activities completed
so if a program is not modified and the last test was successfully completed after the
building of the program the test will not be executed again, and this applies also to
the activity install in particularly in this example and to any objects in generally.

Object Oriented Makefile for Example 1:
CHeaderFile MainHdr(“MAIN.HPP“);
CHeaderFile DrawingHdr(“DRAWING.HPP“);
CHeaderFile ConvertHdr(“CONVERT.HPP“);
CHeaderFile DrawRCHdr(“DRAW.RCH“);
CSourceFile MainSrc(“MAIN.CPP“);
CSourceFile DrawingSrc(“DRAWING.CPP“);
CSourceFile ConvertSrc(“CONVERT.CPP“);
CRCSourceFile DrawRCSrc(“DRAW.RC“);
CObjectFile MainObj(“MAIN.OBJ“);
CObjectFile DrawingObj(“DRAWING.OBJ“);
CObjectFile DrawingObj(“CONVERT.OBJ“);
CResourceFile DrawRes(“DRAW.RES“);
CExeFile DrawExe(“DRAW.EXE“);

DrawRCSrc : DrawRCHdr
DrawingSrc : DrawingHdr
ConvertSrc : ConvertHdr
MainSrc : MainHdr, DrawingHdr, ConvertHdr

DrawRes : DrawRCSrc
DrawingObj : DrawingSrc
ConvertObj : ConvertSrc
MainObj : MainSrc

DrawExe : DrawRes, MainObj, DrawingObj, ConvertObj

5.2 Makefile syntax

Besides of the object declarations and dependencies the makefile can contain
empty lines and comments for user convenience. The object declarations and the
dependencies can be mixed but the preferred order is the declarations first and the
dependencies later. An object can not be multiple defined (i.e. only one object may

The Object Oriented Makefile page 32

exist in one name). If an undefined object is referenced in a dependency it is
automatically defined so it can not be defined later.

The makefile syntax is roughly defined by these grammar rules:

makelines declaration makelines |
 dependency makelines |
 EMPTY_LINE makelines |
 comment makelines |
 ; /* nothing */
declaration TYPE identifier '(' STRING ')' ';' |
 TYPE identifier ';' ;
dependency identifier ':' list ';' ;
list identifier list |
 ; /* nothing */
comment '#' comm_chars '\n' ;

The semantics are defined by adding attributes to the grammar.

5.3 Defaults

Defaults are assigned to object names and object types. Instead of giving certain
information the user can rely on the defaults. The object type and object parameter
default values depend on the object name. The default object property depends on
the object type.

If an object is not declared in declaration section of the makefile and later
referred in a rule, then the object will be implicitly declared (if possible).

The defaults that depends on the object type must be implemented in the object
classes as member functions (for example GetDefaultProp, which should be
implemented in the Make Object). The defaults that depends on the object name
partially must be implemented in the makefile parser. For example the default object
type can not be implemented in the objects classes since no object class available
when the default needed (the default itself will be the object class). For example the
object HELLO.C probably has the class of CCSourceFile.

5.4 Makefile parser

The Object Oriented Make parses the makefile, and creates the objects defined in
it. The dependencies are also processed by the make, but evaluated by objects. The
parsing of a makefile is not a trivial task. For example in the case of an object
declaration the parser has to interpret the parameters to find out their types and find
a proper object creator function. If the make utility is extended with new classes,
the parser has to be modified also to interpret the new object types and their
parameters.

The Object Oriented Make utility maintains an object list. This list is empty in the
beginning, then the make utility inserts predefined Make Objects (currently no
predefined objects exist). After the list was initialised with the predefined objects the
make utility starts to parse the makefile. The makefile probably contains more
object declarations. The declared objects will be created and inserted to the list. The
dependency relation will be attached to the objects in the list. The dependency

The Object Oriented Makefile page 33

relations may contain implicit object declarations which will be inserted to the list
also.

At object creation time the previously saved object parameters must be restored.
The object parameters may change in which case the object will be obsolete.

After the list is built the Make utility looks for the goal object and calls its up-to-
date function which returns the logical value if the object is up-to-date. If the object
is up-to-date the make process terminates, otherwise the goal objects make-me
method will be called.

The Object Oriented Make must provide some service functions to the objects.
The main role of these files is to store object data, such as creation or modification
time or other properties. These functions are:
FILE * OpenStatusFile(
 const char * FileName);

void CloseStatusFile(
 FILE * hFile);

BOOL SearchObjectSection(
 const char * ObjectName,
 FILE * hFile);

int ReadStatusFile(
 const char * ObjectName,
 const char * Property,
 char * Buffer,
 int BufferLen,
 FILE * hFile);

const char *ReadStatusFile(
 const char * ObjectName,
 const char * Property,
 FILE * hFile);

const char *ReadStatusFile(
 const char * ObjectName,
 const char * Property,
 const char * StatusFile);

BOOL WriteStatusFile(
 const char * ObjectName,
 const char * Property,
 const char * Buffer,
 FILE * hFile);

BOOL WriteStatusFile(
 const char * ObjectName,
 const char * Property,
 const char * Buffer,
 const char * StatusFile);

The Object Oriented Makefile page 34

5.4.1 Example

We examine Example 2 in a network containing only UNIX workstations, since
other operating systems such as DOS does not provide support for remote actions.
The backup process can be defined as a traditional make goal.

For example this makefile can create a backup of the entire root filesystem.
backup:
 tar -cv1 /

However using remote tape devices makes the makefile different and more
complicated. For example the use of a remote tape device yields:
backup:
 tar -cvf - / >rsh other.host cat >/dev/mt1

while saving a remote filesystem yields:
backup:
 rsh other.host tar -cvf - / > /dev/mt1

The disadvantages of these solutions is that no checks performed before the
make actions take place (the goal does not depends on anything).

Object Oriented Make example:
CTapeDev TapeDev("/dev/mt1");
CTape Tape("vol13");
CFileSystem Fsystem("/");
CSave Backup(Tape,FSystem);

Backup: TapeDev.mounted Tape Fsystem

There are four objects.

1. TapeDev is the backup device object in which the tape cartridge will be
mounted.

2. Tape is the tape cartridge (identified by its volume label).

3. Fsystem is the filesystem where the backup will be made from.

4. Backup is the activity backup.

The Backup activity has two parameters, the tape cartridge and the filesystem
objects. The backup action (which is coded in the CSave make class) will take place
if the tape cartridge is mounted in the tape device and the backup activity is older
either the data on the tape or the filesystem (the age of the backup activity is the
time since it was performed last time).

If the backup activity has never taken place before it will be older than the tape
and the filesystem. If the backup is performed successfully the Backup object will be
saved, thus next time it can be checked against the last modification time of the data
in the tape or in the filesystem.

Here a special relation 'mounted' is used to establish if the tape is on the tape
device. In the case of the Tape and FSystem objects the default property (last
modification time) is used.

The Object Oriented Makefile page 35

5.5 YACC

We intend to use the YACC utility as the makefile parser. The YACC utility is a
parser generator, which works with LALR languages. So the syntax of the makefile
will be clear, and the semantics will be expressed with an attribute grammar. The
extension of the Object Oriented Make means the extension of makefile language.
This is done by writing new make classes, and defining grammar rules that can
create these objects.

5.6 Object Oriented Makefile parsing

The parsing of the Object Oriented Makefile is done by a program generated by
the YACC utility from an attribute grammar, and a lexical analyser which reads
makefile and makes tokens out of it for the attribute grammar parser. The makefile
parsing will take place in one pass, that is the makefile will be read once and parsed
immediately, so parsing of a special file (pipe) will be possible.

Distributed Object Oriented Make page 36

6. Distributed Object Oriented Make
The Object Oriented Make uses a special makefile to describe the activities (the

activities are similar to goals in the traditional make). Further extension is the
support for heterogeneous distributed (computing) environment. This means that a
set of different computers are connected to a network, and the distributed object
oriented make development system can carry out actions on different hosts to
complete an activity. Generally the Distributed Object Oriented Make can be used
not only in the development of software projects, and other activities that creates
files from other files, but any kind of computer applications which can be described
with this concept.

You may observe that the distributed extension of traditional MAKE utility is
only one application of Distributed Object Oriented Make Development System.

Another example can be a company which has several departments all over the
country. In this case wide area network can be used to connect the different
departments. An activity can be the creation of a report of the activities of the
department. In this case the report depends on the reports of the department, which
can be generated by remote actions. Most of the department report are remote
dependants. In this example special viewpoint can be examined, because of the use
of a wide area network. For example the company may stretch over time-zone
boundaries or the network can be disconnected for a certain period of time (we can
assume the use of telephone lines in the network, since connecting the departments
all the time can be quite expensive). In this example the parallel make actions can be
represented, because it is practical to generate the reports of the departments
parallel.

From the above example you can see that the user is encouraged to derive own
version of the standard make classes to handle special situations or to implement
perfectly new make classes with relations the designer of make did not even think
of.

Here we describe the basic concepts of the Distributed Object Oriented Make.
One of goals is to develop a Make utility, which is capable of maintaining a
distributed program development project. The utility should be capable of making
all files of the project on all machines up-to-date. It will be object-oriented and
easy-to-use. The following part of the document contains ideas about of the
distributed make. The consistency of these ideas is object of further examinations,
so not necessarily all of them will be included in the final specification.

6.1 Necessary information to decide what is remote

Since the same makefile can be used on several hosts, a file can be remote or
local depending on where the make was executed. In the case of those objects
which are either goals or dependants it is necessary to establish whether they are
remote or local. To do this information must be provided on which host the
makefile is running. This information (and other information which can be
determined by low-level, machine dependant functions) must be provided by the
make utility. This can be done in the core make object (the core object must contain

Distributed Object Oriented Make page 37

machine dependant code), so the make should provide predefined object instances
before it starts to parse the makefile.

6.2 The Client-Server modell

To implement the Distributed Object Oriented Make we used the client-server
model for the application. This communication mode is working in the following
way:

 First the client initiates a connection to the server.
 The server accepts the connection.
 The client issues a request.
 The server sends an answer to the request and closes the connection.
 The client receives the answer from the server and closes the connection.
The dmake utility consists of servers and starters. Both servers and starters play

the role of both a server and a client. The server functions has priority over the
client functions to avoid the system hang while waiting for service. The servers must
be running prior to the starting of the starter applications. Normally servers are
running continously (like other daemons), but performing no actions (not eating up
the CPU time). The role of a starter application to initiate a connection to a server
and request some actions from it. The server will probably issue other requests to
other servers and the system will start to work. The starter applications play another
quite important role, as they collect the output of the make actions performed by
the make servers. In this case the starter applications play the role of a server.

6.3 The network distribution concept

The Distributed Object Oriented Make works in the following way. The system
consists of make servers which are running in the hosts of the network. One make
process is running in each host. The entire project update is done by these make
processes, which can communicate with each other. Updating an object can be
requested by connecting to a make process. The protocol used for the
communication is described later. The make servers are playing the role of both
servers and clients, but the server functions have a priority over the client function
(i.e. the make server will serve incoming connections before initiating outgoing
connection). This reduces the response time of the servers and makes the system
load (resource consumption) lower.

6.4 How does the make process work?

After booting the computers the Distributed Object Oriented Make servers
should be started. Each server will parse its makefile, which describes the
environment for the server (objects on the hosts, relations to other hosts, etc.). If
the servers are running the user may initiate a connection to one of the servers to
request the recreation of an object. After that the Distributed Object Oriented Make
decides which objects must be created to build the specified object. Than the
creation of these objects (including the specified object) takes place. In a time only
one object will be made in each host, but different hosts will work in a parallel way.
If an error occurs during the creation of the objects the make process will be shut
down and the error will be reported. However,because different actions take place
in a parallel way, some actions may take place after an error is spotted. This is

Distributed Object Oriented Make page 38

because the termination of these actions is either not possible or may result in
memory loss in the Windows operating system.

6.5 Accessing remote objects

Remote objects are accessed through their local counterparts. Each distributed
object has multiple functionality. First, an object must perform the tasks of a normal
(not distributed) make object, such as performing make actions. Besides these tasks
the distributed make object must work as a server and as a client. If it is defined as
remote object it must propagate all requests to its remote counterpart. If it is
defined as local object it must serve the queries issued by its remote parts. This way
we can provide a transparency of remote objects. (i.e. the remote objects can be
treated almost in the same way as the local objects.)

6.6 Make Communication Protocol

We implemented a communication protocol for transferring object properties,
data and information, and issue requests for actions. This protocol is based on
TCP/IP connections. There are two types of communications.

 External messages
 Internal messages
External messages are used by starter applications to communicate with make

servers. External messages have the form of :
!1.2.3.4,1234 -options#PROJECT#object action
,where 1.2.3.4 is the IP address of the starter application in the form of a

hostname (with an optional domain name) or a dotted quad. The 1234 is the port
number where the starter application accepts output messages. The -output
represents one or more make options (which will take effect during the action). The
‘#PROJECT#object’ part is an object reference. The action is the requested action
(usually the MakeMe action). This message is sent to the make server where the
object ‘#PROJECT#object’ resides. The server creates the object if not exists (loads
a project file if necessary), the object communicate function is invoked to perform
the desired action. The object responds with a message that indicates that the
request is acknowledged or an error occurred. With this type of messages a make
session is created. Each session has the following attributes:

 The starter’s IP address
 The starter’s port
 The project options
 The session identifier
The first three are described above, the session identifier is assigned to a session

by the make server and will be used in all further communication actions involved in
the desired make action.

Internal messages are used to communicate between make servers. Internal
messages have the following form:

@12345678#PROJECT#object action
The 12345678 number is the make identifier described above. Make servers

access the project options and the starter applications communication parameters
through this identifier.

The entire communication is designed in a way that servers only propagate
connection to objects. As we described earlier communications occur between the

Distributed Object Oriented Make page 39

local and remote part of the same object, so the extension of the protocol is easy to
implement. Basically individual objects may implement an arbitrary protocol.

6.7 Make Object Types for Distributed Processing

Several classes and structures provided to utilities the communication. These are:
 The CHostObject class
 The MPC_Command class
 The _HCOMM class
The CHostObject class represents a host in the network. Host objects are used to

establish a connection and validate incoming connection. This means that the
communication peer is provided as a Host object in most of the cases, and a Host
object is assigned to each incoming connection (the incoming connections are
rejected if no corresponding host found). This way with host objects we establish a
host-level access control (user level access control is not common in Windows
environments). The Host class provides the following interface to objects:
class CHostObject : public CMakeObject
{
 DECLARE_OBJ(CHostObject);
public:
 CHostObject(void);
 ~CHostObject();

// override Make Object operators

 virtual BOOL IsCompleted(void);

 virtual BOOL IsExist(void);

virtual BOOL MakeMe(void);

 static const char * ConvertPath(char * FilePath);

 const char * HostPath(void);

 KWSocket * Connect();

static
int
 Reply(
 HCOMM hComm,
 const char * Message,
 int MessageLength = -1);

 int Send(
 const char * pSendData,
 int SendLen,
 KWSocket * pSocket = NULL,
 BOOL EnableIdle = TRUE);

Distributed Object Oriented Make page 40

 int Send(
 char * pData,
 int Len,
 const char * pSendData,
 int SendLen = -1);

 KWStreamSocketClient * Send(
 char * pSendData,
 int SendLen = -1,
 BOOL EnableIdle = TRUE);

protected:

 char m_HostPath[32];

 char m_IPAddress[32];

 char * m_ServerName;

friend CProject;

};

The MPC_Command class provides an interface to simple internal make
messages. The class sends a message and waits for the response. This is the highest
level interface to the make messages. However this interface can handle the most
basic messages. More complicated protocol extensions may be implemented in
make objects.
struct MPC_response {
 int ReturnCode;
 int Length;
 char * Response;
};

class MPC_command
{
public:

 MPC_command();

 MPC_command(CHostObject *hostobj, CMakeObject *obj, char
*commandstr, const char * pResult = NULL);

 ~MPC_command();

 void SetHost(CHostObject *hostobj);

 void SetObject(char *objrefstr);

 void SetObject(CMakeObject *obj);

Distributed Object Oriented Make page 41

 void SetCommand(char *comm);

 void SetCommand(int size, char *comm);

 BOOL Send(void);

 const char * Result(void);

private:

 CHostObject * host;
 CMakeObject * m_pObject;
 int length;
 char * command;
 const char * m_pResult;
 MPC_response response;

};

The _HCOMM class is a lower level interface of make connections. Both
incoming and outgoing connections can be represented with the _HCOMM class.
The _HCOMM class is used in the request functions of the make classes. The
_HCOMM class contains all the parameters of the connection. The _HCOMM class
is used to pass connections to objects. The file transfer is also implemented with this
class.
class _HCOMM
{
public:

 _HCOMM(CMakeObject *object, char *message);

 _HCOMM(KWSocket *socket, CMakeObject *object = NULL);

 ~_HCOMM();

 int Connect();

 int Send(const char *Buffer, int Bufflen = -1);

 int Receive(char *Buffer, int Bufflen);

 char *Gets();

 CMakeObject * pObject;
 KWSocket * pSocket;
 CHostObject * pHost;
 const char * Message;
 long MakeID;

Distributed Object Oriented Make page 42

private:

 char * buffer;
 int bufsiz;
 int datalen;

};

How to extend the Distributed Object Oriented Make? page 43

7. How to extend the Distributed Object Oriented Make?

1. Designing of new property and make classes: Designing the new property
and make classes are very important. We have to decide, what kind of
objects we want to introduce. After deciding what type of objects needed and
what kind of properties may it has, we must specify the most important
aspects of the new make (or property class). We must answer the following
questions. What dependencies the new object may have? What make action
the new object class must perform? How it relates to other objects and
properties?

2. Implementation of the new object or property class: After we answered the
questions we can implement the new class in C++. The method how the new
make or property classes must be implemented is described in the next
section.

3. Specifying the new class for the makefile parser: After the implementation of
a new class we must inform the makefile parser what is the name of the new
class and how to create it. This can be done by modifying the makefile
grammar.

4. Rebuild the make program: Compile the source code of the new make or
property class. Rebuild the make utility.

5. Test the new make utility: After the make is successfully rebuilt it must be
tested, with some test projects. The test projects must cover as many of the
possible cases as possible. For example there must be errors both in some of
the test projects, and makefiles. An important test can be it the make utility is
able to make itself again.

6. Install the make utility: Replace the old make executable with the new one.
The last three steps can be done by the make itself.

7.1.1 Example

In the Example 2 we can use a quite similar makefile we used in the Object
Oriented section, except objects are extended with locations. So the makefile looks
like this:
CHost RemoteHost1("remote1.host");
CHost RemoteHost2("remote2.host");
CTapeDev TapeDev("RemoteHost1:/dev/mt1");
CTape Tape("vol13");
CFileSystem FSystem("RemoteHost2:/");
CSave Backup(Tape,FSystem);

Backup: TapeDev.mounted Tape FSystem

In that case the backup device is on the host named "remote1.host" (the
RemoteHost1 object) and the filesystem of the host "remote2.host" will be saved.
The make action will be performed locally. We can see that making some objects
remote is quite simple in the makefile. The objects can access remote files and
actions through remote host objects.

Projects page 44

8. Projects

Projects are used to specify object sets. A project is a set of objects. Each object
in a project depends on objects in the same project. Projects are also represented as
objects. A project may contain sub-projects (i.e. project type objects). As objects
projects have a unique name. Names are unique in a project, but different projects
may contain objects with the same name. To avoid confusion objects are referred as
objects of a specified project.

8.1 Make processes

A make process is running on each machine. These make processes govern the
communication between objects in different hosts. The make process is working by
the definitions in the top-level makefile. In the top-level makefile we can define
projects. The dmake program can only create objects that defined in the makefile.
The top-level makefile works as a configuration file for the make processes. Even
host level access control is implemented with top-level makefiles.

8.2 Object states

From the point of view of the make process the objects may be in several states.
These states control the make process. The states are implemented in the
CMakeObject class. For each object the following states exist:
 INITIAL - the object is not checked to be complete
 NOTCOMPLETE - the object is not complete, but no action has been

performed to make it complete
 BLOCKED - the make action corresponding to the object should not be

started yet
 READY - the make action should take place
 MAKING - the make action is in progress
 COMPLETE - the object is complete
 ERROR - an error occurred making the object
The object states have a different meaning for remote, local and project objects.

The concept is to treat remote objects as local object with one dependant of its
remote part. The make action corresponding to a remote object is to transfer its
actual data. So the meaning of the states for remote objects are the following:
 INITIAL - same as in the case of local objects
 NOTCOMPLETE - the remote part is not compete
 BLOCKED - a request has been sent to the remote part to make itself, but

the remote part is not yet complete
 READY - the remote part is complete, we are ready for the data transfer
 MAKING - the data transfer is in progress
 COMPLETE - the data has been successfully transferred to the local host
 ERROR - an error occurred during the process
Because the states have a special meaning remote objects must be treated in a

slightly different way than local objects. It is because in a make process it is possible

Projects page 45

(and likely) that transferring the data of the object is not necessary, but only some
checks should be performed on the object. To make it clear let's see an example.
Assume that we have a local object file and a remote source file and there is no local
copy of the source file available. If the object file exists and newer than the source
file (in the remote machine), than no action should take place. But in that case the
source file won't be in the state COMPLETE but in the state READY. So remote
objects are not necessarily made complete. The object states are implemented in a
way that only certain changes should be made to the states. These restrictions are
applied to make sure that the make process will terminate. Fortunately the object
class implementors have little or nothing to do with the object states.

Customising the Object Oriented Make Components page 46

9. Customising the Object Oriented Make Components

The Distributed Object Oriented Make is extensible. There is a way to introduce
new make classes and properties (relations). The new objects must be implemented
in C++. In the following sections we describe how to write new make and property
classes for the Distributed Object Oriented Make. Besides writing the C++ code the
class implementor must define the name of the new class, and the construction of an
object instance of the new class. These definitions are necessary for a makefile
parser to detect and create new objects.

9.1 Inheritance, virtual functions

In this chapter we describe how to use inheritance and virtual functions to define
new make and property object classes. We use the definitions and implementations
of the property classes CPropTime and CPropModifyTime and the make object
class CFileObject.

9.2 Adding a new property

In this section we use the property class CPropTime as an example. The
CPropTime class is inherited from the CProperty class. The CPropTime class has
no more ancestors, so the DECLARE_PROP macro is used to declare the
IsKindOf, IsKindOfProp and Relation functions (which are automatic defined in
macro). This macro has one parameter, the name of the object class (CPropTime).
Then a public virtual function is declared (GetTime). This function is
unimplemented in the CPropTime class (we assigned a zero to it). This virtual
function enables us to inherit the CPropTime property by different make classes. In
these classes the GetTime function must be implemented. This is followed by the
object specific data and function fields. In the example one function (SetTime) and
one data field m_Time is declared. After the class declaration, the implementation
part follows. The IsKindOf and IsKindOfProp functions are implemented by using
the IMPLEMENT_PROP macro. This macro has two parameters, the property
class name and its ancestors class name (CPropTime and CProperty). After that the
function Relation is implemented. This function is declared by the
DECLARE_PROP macro, but can not be implemented by the
IMPLEMENT_PROP macro, since its implementation may be different in each
class. In the last part the function field (SetTime) is implemented.
///
// CPropTime
class CPropTime : public CProperty
{
 DECLARE_PROP(CPropTime);
public:
 virtual CGMTime GetTime(void) = 0;
};
IMPLEMENT_PROP(CPropTime, Cproperty);

Customising the Object Oriented Make Components page 47

BOOL CPropTime::Relation(
 CProperty * Left,
 CProperty * Right)
{
 return ((CPropTime *) Left)->GetTime() >=
 ((CPropTime *) Right)->GetTime();
}

CProperty

IsKindOf
IsKindOfProp

CPropTime

IsKindOf
IsKindOfProp
GetTime = 0

Relation

9.2.1 Adding a relation

A new relation can be added by defining a new property, and implementing its
Relation function according to the needs. Each property can define only one
relation. For defining more relations new property classes must be implemented.
BOOL CPropTime::Relation(
 CProperty * Left,
 CProperty * Right)
{
 return ((CPropTime *) Left)->GetTime() >=
 ((CPropTime *) Right)->GetTime();
}

9.2.2 Steps to define a new Property

1. new Property class is inherited from the CProperty class

2. DECLARE_PROP macro is used to declare standard part of the new
Property class

3. declare additional Getxxx virtual function to enable accessing property
value

4. IMPLEMENT_PROP macro is used to implement standard part of the new
Property class

5. implement BOOL Relation(CProperty *, CProperty *)
member function

Customising the Object Oriented Make Components page 48

9.3 Customising existing property

The property classes are either inherited from the CProprty class or from another
property class. We illustrate the latter with the help of the class CPropModifyTime.
The CPropModifyTime class is inherited from the CPropTime class. The
CPropModifyTime class declared the same way as the CPropTime class were
declared except that the inherited GetTime function is redeclared as private. The
IsKindOf and IskindOfProp functions are declared and implemented by using
macros as in the declaration of the CPropTime class. The CPropModifyTime class
has an unimplemented virtual function too (the GetModifyTime function), and it
makes private the GetTime inherited virtual function. The Relation member function
is declared by the DECLARE_PROP macro. The CPropModifyTime class has no
other data or function fields.

CPropTime

IsKindOf
IsKindOfProp
GetTime = 0

Relation

CPropModifyTime

IsKindOf
IsKindOfProp

GetTime = 0 (private!)
GetModifyTime = 0

Relation

///
// CPropModifyTime
class CPropModifyTime : public CPropTime
{
 DECLARE_PROP(CPropModifyTime);
public:
 virtual CGMTime GetModifyTime(void) = 0;
private:
 virtual CGMTime GetTime(void) = 0;
};
IMPLEMENT_PROP(CPropModifyTime, CPropTime);

BOOL CPropTime::Relation(
 CProperty * Left,
 CProperty * Right)
{
 return CPropTime::Relation(Left, Right);
}

9.3.1 Steps to costumising an existing Property

1. new Property class is inherited from the predefined class

Customising the Object Oriented Make Components page 49

2. DECLARE_PROP macro is used to declare standard part of the new
Property class

3. hide all property value functions of all ancestor Property class redeclaring
from public to private access

4. declare additional Getxxx virtual function to enable accessing property
value

5. IMPLEMENT_PROP macro is used to implement standard part of the new
Property class

6. implement BOOL Relation(CProperty *, CProperty *)
member function

9.4 Adding a new make class

Make classes are inherited from a descendant of the CMakeObject class and
property classes. The most simple make object classes are inherited from the
CMakeObject class. Here we describe the creation of a new make object class by
using the CFileObject class as an example. The CFileObject class is derived from
the CMakeObject class and the property classes CPropCreateTime and
CPropModifyTime. In the declaration of the class we can see the usage of the
DECLARE_OBJ macro which declares the IsKindOf and IsKindOfProp functions.
Then the virtual functions are declared which should be implemented to make this
class a non-abstract class (the functions which are unimplemented in the ancestor
classes). In the implementation part we can see that the functions IsKindOf and
IsKindOfProp are not implemented by the macro IMPLEMENT_OBJ, but
implemented individually. The IsKindOf functions checks if the object class name
(CFileObject) equals to the parameter of the IsKindOf functions and if it is then
returns a pointer to the actual object. It the match is failed then it calls the IsKindOf
functions of the ancestors. The IsKindOfProp function does the same thing except
the actual object class name is not checked and only the property ancestors are
called. If one of the ancestors recognised the object class name then the function
returns it immediately.

After these functions you can extend the object functionality using other member
functions. The CFileObject class is not an abstract class since all virtual functions
that are unimplemented in the ancestor classes are implemented.

Customising the Object Oriented Make Components page 50

CMakeObject

IsKindOf
IsKindOfProp
IsCompleted

Construct
MakeMe

GetDefaultProp

CFileObject

IsKindOf
IsKindOfProp
IsCompleted
Construct
MakeMe

GetDefaultProp
GetTime

GetModifyTime

//
// CFileObject
class CFileObject : public CMakeObject,
 public CPropModifyTime
{
 DECLARE_OBJ(CFileObject);
public:
 // overwrite all property functions of base properties
 (Getxxx)
 virtual CGMTime GetTime(void);
 virtual CGMTime GetModifyTime(void);

 // overwrite CMakeObject functions
 virtual BOOL MakeMe(void);
 virtual const char * GetDefaultProp(void);
 ...

protected:
 CFilePath m_FilePath;
 ...
};
IMPLEMENT_OBJ2(CFileObject, CMakeObject, CPropModifyTime);

CMakeObject * CFileObject::Construct(
 const char * ParamLine)
{
 CFileObject * pObject = new CFileObject(ParamLine);
 pObject->m_FilePath = ParamLine;
 return pObject;
}

Customising the Object Oriented Make Components page 51

const char * CFileObject::GetDefaultProp(void)
{
 return PROP(CModifyTime);
}

CGMTime CFileObject::GetTime(void)
{
 return GetModifyTime();
}

CGMTime CFileObject::GetModifyTime(void)
{
 return <file time stamp>;
}

9.4.1 Steps to define a new Make Object

1. new Property class is inherited from the CMakeObject and other Property
class

2. DECLARE_OBJ macro is used to declare standard part of the new Make
Object class

3. redeclare all Getxxx virtual value functions of ancestor Properties to public

4. redeclare MakeMe virtual function if necessary

5. declare member variables

6. IMPLEMENT_OBJ (or IMPLEMENT_OBJ2, IMPLEMENT_OBJ3 etc.
on multiple inheritance) macro is used to implement standard part of the
new Make Object class

7. implement all Getxxx functions

8. implement Construct function for dynamic construction

9. implement GetDefaultProp function

10. implement MakeMe function if necessary (based on CMakeObject
MakeMe)

9.5 Customising existing make classes

Make classes can be inherited from other make classes. This way existing make
classes can be extended with new properties and relations. Inheritance from other
make classes can be done the same way as in the previous example where a new
make class were derived from the CMakeObject class.

Other features page 52

10. Other features

10.1 Options

The object oriented make utility may take command line options which effect the
way that the objects are working. Some options may effect the work of the makefile
parser while other options may effect the work of the objects. These options can be
implemented as a predefined make object. For example make options can describe
defaults or may effect the work of certain object defined in the makefile.

10.2 Automatic Makefile skeleton building

The Object Oriented Makefile describes the structure of the project. For the
automatic generation of the makefile, all the aspects of the project building must be
considered, so it is impossible for complex projects. However the makefile skeleton
building is possible based on some obvious information. For example dependencies
may be generated automatically in some cases or automatic object definitions can be
made explicit by adding the proper declarations to the makefile.

10.3 Makefile conversion utilities

Another important utility can be a makefile converter, which convert traditional
makefiles or other information to object oriented makefiles. This kind of utility will
allow the make users to switch to an object oriented make without learning the
entire makefile language at once.

10.4 Problems and solutions

In this section we describe some problems which arose implementing a
Distributed Object Oriented Make program. We think these problems are the basic
problems each Distributed Object Oriented Implementor should solve. In some
cases we show other solutions than the chosen in our implementation, in these cases
we give pros and contras for each solution.

10.4.1 Multiplatform implementation

The problem is that the program should run under UNIX and MS Windows. To
write a C++ program that runs under both UNIX and Windows is quite trivial.
Problems arise when the program contains operating system specific parts. In this
case these parts was OS specific:

 The file naming
 The communication handling
 The shell command execution
 Preemption of processes (preemptive multitasking is not supported by MS

Windows for Workgroups)
 User interfaces
The DOS operating system handles only file names 8+3 characters long. The

UNIX systems can handle almost arbitrary long file names (usually the limit of 256
characters never exceeded). Another problem is the representation of path names. In

Other features page 53

the UNIX systems the ‘/’ character is used to separate the directory names, in the
DOS the ‘\’ character is used. Another problem may be the DOS drive concept,
where letters are assigned to hard disk partitions and floppy disk drives (and other
devices). Another problem is that the UNIX file names are case sensitive, while the
DOS file names are not, so the DOS may treat two different UNIX files (for
example ‘Example’ and ‘eXample’) as a same file. Besides these purely operating
system specific problems another problem is the different file naming conventions
(which partly arises from the operating system specific limitations). This last
problem means that the same type of files (such as object files) are named in
different way (for example an object file generated from a C source file example.c
named example.o on a UNIX box and example.obj under the DOS). Many cross-
platform software shows solutions for a part of these problems (such as DOS NFS
clients), but we used a different approach. The files are represented in an operating
system independent form (i.e. always ‘/’ used as separator), and DOS drive
specifications are discarded under UNIX.

The communication handling is quite similar under UNIX and Windows,
however in the Windows implementation constants and variables are named
differently. The solution for this problem is to write the communication specific
code twice and use ifdefs to include the correct version to the operating system
specific code. As a solution to this problem the communication functions may be
encapsulated into objects. Our implementation is based on the KW object set, which
contains such an encapsulation. Unfortunately some of the features of the
communication protocol are not included to these object encapsulations.

The shell command executions is one of the major problems in this multiplatform
implementation. The main problem is with the Windows operating system which
provides no functions to execute DOS commands. In our solution we used a quite
complicated trick to execute a DOS command, which involved creation of Windows
program information files and made the resulting program much more complicated
and harder to install and maintain. Even the accessing of the return code of a
command remained unsolved. We found no way to retrieve the return code of the
command. The termination of the shell command for a user request is also not
possible under Windows.

Another problem with the Windows environment that it is not primitive (i.e. a
program may eat up all the CPU time, leaving no processing time to other
programs). This limitation made the entire implementation more complicated. For
code level compatibility we did not used some features of the UNIX operating
system. We must implement a scheduling scheme that releases CPU time for other
applications and to handle parallel communication requests. We can not emphasise
the problems arisen with the parallel execution (in the sense that parallel actions
take place in different hosts) and the parallel message handling. This is one of the
key problems since timings are extremely important to avoid deadlocks and
execution errors (timeouts that are detected as errors by the application).

The problem of user interfaces seems to be not relevant since the servers have
small and simple user interfaces. Even with these interfaces a bunch of problems
may arise. Not to mention that the interfaces should be implemented twice (since
not too much common was found in the UNIX and Windows version), the
communication may result problems in the interfaces. For example if an error
occurred in the initialisation of the communication (which is necessary under
Windows) the application window was not displayed (since the initialisation of the

Other features page 54

communication protocol was the part of the initialisation of the application), so the
user has no indication of the error.

10.4.2 Project termination

Another great problem is the termination of a make process in the case of an
error. The make process creates a quite complicated data structure representing a
process. The cleanup of these complicated structures are not an obvious task if an
error occurs (or an error message arrives from another host). These cleanups must
be performed in all hosts involved in the project. Even on some hosts make actions
may be in progress. The termination of these processes may be quite difficult and
may result in unpredictable errors. In our implementations these processes won’t be
terminated, but the entire cleanup process will be suspended until the termination of
these processes.

10.4.3 Communication

There are many possible problems with the communication. These problems
partly depend on the network environment. There are many possible problems from
the most basic connection problems to such a complicated problem such as the
misconfiguration of the network software of the absence of name resolution.

10.5 Bugs and weaknesses of the implementation

The program runs only an IP network. The network must be configured properly
to use host name resolution, etc. The program will not start up without the
networking software even if make actions should be performed in one host.

The host are identified by their Internet addresses. This is sufficient in most of
the cases, but a host may have more Internet addresses. If a host have multiple
internet addresses the explicitly given or the first returned by the gethostbyname
function is used.

The system only uses TCP connections. The use of the User Datagram protocol
(UDP) may improve the effectively of the server, but makes it much more complex
and may introduce brand new problems with message handling.

Many of the make applications uses the modification times of files. The network
may span across time zone boundaries. The time zones are handled correctly by the
CGMTime class. However if the clocks of the hosts is not synchronised correctly
even on local networks many strange thing may happen. This problem can be used
by using a time service in the net. (The description of the network time service is
not in the scope of this documentation.) The TZ (time zone) environment variable
must be set correctly.

The provided object set is only capable to handle the most basic actions. A well
designed and implemented object set is necessary to effectively use the application.

In the Windows version only one starter application can be started once.
Fortunately the use of multiple starter applications is not typical.

Because of some object oriented design concept the dmake utility lacks the
flexibility of the traditional make utility. However by implementing a more general
object set the flexibility may be greatly improved.

Other features page 55

10.6 Most important features

There are many important features in this implementation. Probably the most
important feature is the easy extensibility, and the use of the networking concept,
which yields an effective parallel execution.

10.6.1 Easy network distribution

The Distributed Object Oriented make provides an easy to use interface to build
distributed projects and keep them up-to-date. First you need to design your
project, and describe it in an object oriented makefile. The object oriented makefile
consists of object declarations and dependency relations. Define the hosts and
objects (object, source and executable files, options etc.) in the makefile. Then
describe the relation between the objects, by specifying dependency relations.
Distribute your object in the hosts by specifying host dependencies. Redistributing
the project is easy this way. Finally you must copy the data of source objects to the
specified hosts.

10.6.2 Parallel execution

The make actions taken in different hosts will be executed in a parallel way.
Design your project to take the advantage of parallel processing, but also note that
the dependency relations between objects on different hosts may increase the
network traffic. Make actions on the same host are executed one after the other.
Parallel execution of these actions makes no sense, since this would result in a
slower execution even if no swapping is required. However on multiprocessor
machines the parallel execution may result a better performance.

Other features page 56

Contents
1. Distributed Object Oriented Make Development System 1

1.1 Introduction ... 1
2. The Traditional Make Utility .. 4

2.1 Concepts .. 4
2.2 Files ... 4
2.3 Make process ... 7

3. Distributed Make Utility ... 8
3.1 Network, distribution concept... 9
3.2 Problems with network distribution... 9
3.3 Data conversion on multiplatform network ... 10
3.4 Make process ... 10

4. Object Oriented Make .. 12
4.1 General introduction to the object oriented concepts 12
4.2 Object Oriented Make classes ... 13
4.3 Object Oriented Makefile .. 15
4.4 Makefile parser and Make Objects .. 15
4.5 Special object types for Object Oriented Make .. 16

4.5.1 Property Object Type ... 16
4.5.2 Make Object Type ... 17
4.5.3 Error Handling ... 24
4.5.4 Non-file Make Object Type .. 24

4.6 Object Instances ... 25
4.6.1 Property Object ... 25
4.6.2 Make Object .. 25

4.7 Relations .. 25
4.8 Properties and Make Objects .. 25

4.8.1 Property inheritance rules... 26
4.8.2 Make Object inheritance .. 27
4.8.3 Default Property Type ... 28

4.9 Properties and Relations ... 28
5. The Object Oriented Makefile ... 30

5.1 Concepts .. 30
5.2 Makefile syntax .. 31
5.3 Defaults .. 32
5.4 Makefile parser ... 32

5.4.1 Example .. 34
5.5 YACC .. 35
5.6 Object Oriented Makefile parsing .. 35

6. Distributed Object Oriented Make .. 36
6.1 Necessary information to decide what is remote .. 36
6.2 The Client-Server modell .. 37
6.3 The network distribution concept.. 37
6.4 How does the make process work? ... 37
6.5 Accessing remote objects .. 38
6.6 Make Communication Protocol .. 38
6.7 Make Object Types for Distributed Processing.. 39

Other features page 57

7. How to extend the Distributed Object Oriented Make? 43
7.1.1 Example .. 43

8. Projects .. 44
8.1 Make processes .. 44
8.2 Object states ... 44

9. Customising the Object Oriented Make Components .. 46
9.1 Inheritance, virtual functions ... 46
9.2 Adding a new property ... 46

9.2.1 Adding a relation ... 47
9.2.2 Steps to define a new Property ... 47

9.3 Customising existing property ... 48
9.3.1 Steps to costumising an existing Property .. 48

9.4 Adding a new make class .. 49
9.4.1 Steps to define a new Make Object .. 51

9.5 Customising existing make classes .. 51
10. Other features... 52

10.1 Options... 52
10.2 Automatic Makefile skeleton building ... 52
10.3 Makefile conversion utilities.. 52
10.4 Problems and solutions ... 52

10.4.1 Multiplatform implementation .. 52
10.4.2 Project termination... 54
10.4.3 Communication .. 54

10.5 Bugs and weaknesses of the implementation ... 54
10.6 Most important features .. 55

10.6.1 Easy network distribution .. 55
10.6.2 Parallel execution ... 55

Contents... 56

